Open Access
SHS Web of Conf.
Volume 174, 2023
2023 2nd International Conference on Science Education and Art Appreciation (SEAA 2023)
Article Number 03004
Number of page(s) 5
Section Landscape Management and Socio-Environmental Planning
Published online 11 August 2023
  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68: 394-424 [CrossRef] [PubMed] [Google Scholar]
  2. Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge[J]. Cancer Treat Rev, 2014, 40(1): 129-138. [CrossRef] [Google Scholar]
  3. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature, 2000, 406: 747-752 [CrossRef] [Google Scholar]
  4. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 2001, 98: 10869-10874. [CrossRef] [Google Scholar]
  5. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415: 530-536. [CrossRef] [Google Scholar]
  6. Gil Del Alcazar CR, Huh SJ, Ekram MB, et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov, 2017, 7: 1098-1115. [CrossRef] [Google Scholar]
  7. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27: 450-461. [CrossRef] [Google Scholar]
  8. Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2): 98 - 101 [Google Scholar]
  9. Hoshino A, Costa - Silva B, Shen TL, et al. Tumor exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527 (7578) :329 - 335 [CrossRef] [PubMed] [Google Scholar]
  10. Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies[J]. Nat Rev Cancer, 2016, 16(7): 447 – 462. [CrossRef] [Google Scholar]
  11. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19 - 20): 1267 – 1284. [CrossRef] [Google Scholar]
  12. Hinshaw DC, Shevde L A. The tumor microenvironment innately modulates cancer progression [J]. Cancer Res, 2019, 79(18): 4557-4566 [CrossRef] [Google Scholar]
  13. De-la-Cruz-Ku G, Valcarcel B, Morante Z, et al. Breast-conserving surgery vs total mastectomy in patients with triple negative breast cancer in early stages: a propensity score analysis[J]. Breast Dis, 2020, 39(1): 29-35. [CrossRef] [Google Scholar]
  14. Untch M, Jackisch C, SchneeweiB A, et al. A randomized phase III trial comparing neoadjuvant chemo-therapy with weekly nanoparticlebased paclitaxel with solvent-based paclitaxel followed by anthracyline /cyclophosphamide for patients with early breast cancer ( GeparSepto); GBG 69[J]. Cancer Research, 2015, 75 (9 Supplement): S2-07. [CrossRef] [Google Scholar]
  15. Abdulkarim BS, Cuartero J, Hanson J, et al. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy[J]. J Clin Oncol, 2011, 29(21): 2852-2858. [CrossRef] [Google Scholar]
  16. Xu W, Luo T, Li P, et al. RGD-conjugated gold nano-rods induce radiosensitization in melanoma cancer cells by downregulating α ( v )βз expression[J]. Int J Nanomedicine, 2012, 7: 915-924. [Google Scholar]
  17. Hall H, Hubbell JA. Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 Acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2[J]. Microvasc Res, 2004, 68(3): 169-178. [CrossRef] [Google Scholar]
  18. Li F, Kitajima S, Kohno S, et al. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion[J]. Cancer Res, 2019, 79(15): 3903 - 3915 [CrossRef] [Google Scholar]
  19. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018. 175(2): 313-326 [CrossRef] [Google Scholar]
  20. Stiff A, Trikha P, Wesolowski R, et al. Myeloid - derived suppressor cells express bruton’s tyrosine kinase and can be depleted in tumor -bearing hosts by ibrutinib treatment[J]. Cancer Res, 2016, 76(8) :2125-2136 [CrossRef] [Google Scholar]
  21. Bahl S, Roses RE, Sharma A, et al. Asymptomatic changes in cardiac function can occur in ductal carcinoma - in - situ patients following treatment with HER - 2 / neu - pulsed dendritic cell vaccines[J]. Am J Surg, 2009, 198(4): 488 - 494 [CrossRef] [Google Scholar]
  22. Wiedermann U, Wiltschke C, Jasinska J, et al. A virosomal formulated Her - 2 /neu multipeptide vaccine induces Her - 2 /neu - specific immune responses in patients with metastatic breast cancer: a phaseⅠ study[J]. Breast Cancer Res Treat, 2010, 119(3): 673 - 683 [CrossRef] [Google Scholar]
  23. Pichinuk E, Benhar I, Jacobi O, et al. Antibody targeting of cell - bound MUC1 SEA domain kills tumor cells[J]. Cancer Res, 2012, 72(13): 3324 - 3336 [CrossRef] [Google Scholar]
  24. Oskarsson T, Acharyya S, Zhang XH, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med, 2011, 17: 867-874 [CrossRef] [Google Scholar]
  25. Zhang XH, Jin X, Malladi S, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell, 2013, 154: 1060-1073 [CrossRef] [Google Scholar]
  26. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med, 2018, 379: 2108-2121 [CrossRef] [Google Scholar]
  27. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer, 2016, 16: 582-98 [CrossRef] [Google Scholar]
  28. Chen X, Song E. Turning foes to friends: targeting cancerassociated fibroblasts. Nat Rev Drug Discov, 2019, 18: 99-115 [CrossRef] [Google Scholar]
  29. Ziani L, Chouaib S, Thiery J. Alteration of the anti-tumor immune response by cancer-associated fibro-blasts. Front Immunol, 2018, 9: 414 [CrossRef] [Google Scholar]
  30. Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer, 2020, 20: 174-186 [CrossRef] [Google Scholar]
  31. Lakins MA, Ghorani E, Munir H, et al. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat Commun, 2018, 9: 948 [CrossRef] [Google Scholar]
  32. Cohen N, Shani O, Raz Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting micro environment in breast cancer via secretion of Chitinase 3-like 1. Oncogene, 2017, 36: 4457-68 [CrossRef] [Google Scholar]
  33. Keren L, Bosse M, Marquez D, et al. A structured tumor immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell, 2018,174: 1373-1387 [CrossRef] [Google Scholar]
  34. Marin-Acevedo JA, Soyano AE, Dholaria B, et al. Cancer immunotherapy beyond immune checkpoint inhibitors[J]. J Hematol Oncol, 2018, 11(1): 8. [CrossRef] [Google Scholar]
  35. Kassardjian A, Shintaku PI, Moatamed NA. Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4)and programmed death-ligand 1 ( PD-L1 ) in female breast carcinomas[J]. PLoS One, 2018, 13(4): e0195958. [CrossRef] [Google Scholar]
  36. Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4[J]. Science, 2011, 332(6029): 600-603. [CrossRef] [Google Scholar]
  37. Song DG, Ye Q, Poussin M, et al. Effective adoptive immunotherapy of triple-negative breast cancer by fo-late receptor-alpha redirected T cells is influenced by surface antigen expression level[J]. J Hematol Oncol, 2016, 9(1): 56. [CrossRef] [Google Scholar]
  38. Beavis PA, Henderson MA, Giuffrida L, et al. Dual PD-1 and CTLA-4 check point blockade promotes antitumor immune responses through CD4+ Foxp3-cell-mediated modulation of CD103+ dendritic cells[J]. Cancer Immunol Res, 2018, 6(9): 1069-1081. [CrossRef] [Google Scholar]
  39. JIANG W, VON ROEMELING CA, CHEN Y, et al. Designing nanomedicine for immuno-oncology[J]. Nat Biomed Eng, 2017, 1(2): 29. [Google Scholar]
  40. LI W, LI J, GAO J, et al. The fine-tuning of thermo-sensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors[J]. Biomaterials, 2011, 32 (15) :3832-3844. [CrossRef] [Google Scholar]
  41. MILLER MA, ZHENG YR, GADDE S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt( IV) pro-drug[J]. Nat Comm, 2015, 6: 8692. [CrossRef] [Google Scholar]
  42. LIU G, ABRAHAM E. MicroRNAs in immune response and macrphage polarization[J]. Arterioscl Thromb Vascul Biol, 2013, 33(2): 170-177. [CrossRef] [Google Scholar]
  43. LUNOV O, SYROVETS T, BUCHELE B, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages[J]. Bio-materials, 2010, 31(19): 5063-5071. [Google Scholar]
  44. LI W, WEI H, LI H, et al. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology[J]. Nanomed: Nanotechnol Biol Med, 2014, 9(16): 2587-2605. [Google Scholar]
  45. LIPSON E J. Re-orienting the immune system: durable tumor regression and successful re-induction therapy using anti-PD1 antibodies[J]. OncoImmunology, 2013, 2(4): e23661. [CrossRef] [Google Scholar]
  46. MEI L, ZHANG X, FENG S S. Autophagy inhibition strategy for advanced nanomedicine[J]. Nanomedicine, 2014, 9(3): 377-380. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.