Open Access
Issue
SHS Web of Conf.
Volume 174, 2023
2023 2nd International Conference on Science Education and Art Appreciation (SEAA 2023)
Article Number 03005
Number of page(s) 6
Section Landscape Management and Socio-Environmental Planning
DOI https://doi.org/10.1051/shsconf/202317403005
Published online 11 August 2023
  1. Overview. World Health Organization; 2022 [cited 2022 11/18/2022]; Available from: https://covid19.who.int/ [Google Scholar]
  2. COVID-19 Treatments and Medications. Centers of disease control and prevention; 2022[cited 2022 10/19/2022]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/your-health/treatments-for-severe-illness.html#print [Google Scholar]
  3. B.J. McMullan, M. Mostaghim. Aust Prescr, 38 (2015), p. 87 [Google Scholar]
  4. JF Bermejo-Martin, DJ Kelvin, JM Eiros, J Castro-deza, R Ortiz de Lejarazu. J Infect Dev Ctries, 3 (3) (2009), pp. 159-161 [Google Scholar]
  5. JY Min, YJ. Jang. Mediators Inflamm, 2012 (2012), Article 649570) [Google Scholar]
  6. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.Int J Antimicrob Agents. 2020; 56105949 [Google Scholar]
  7. Jackson, C.B., Farzan, M., Chen, B. et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23, 3–20 (2022). https://doi.org/10.1038/s41580-021-00418-x [CrossRef] [Google Scholar]
  8. Altulea, Dania et al. “What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology.” Journal of molecular cell biology vol. 13,3 (2021): 175-184. doi:10.1093/jmcb/mjab016 [CrossRef] [Google Scholar]
  9. E Tran DH, Sugamata R, Hirose T, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo) 2019;72(10):759–768. doi: 10.1038/s41429-019-0204-x. [CrossRef] [Google Scholar]
  10. Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv. 2020 [Google Scholar]
  11. Min J-Y, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm. 2012;2012:649570. doi: 10.1155/2012/649570. [Google Scholar]
  12. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 — preliminary report. N Engl J Med. 2020 [cited 2020May 25];NEJMoa2007764. Available from: http://www.nejm.org/doi/10.1056/NEJMoa200776410.1056/NEJMoa2007764 [Google Scholar]
  13. Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, et al., Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014, 143(2): 225–245. [CrossRef] [Google Scholar]
  14. Retallack, Hanna et al. “Zika virus cell tropism in the developing human brain and inhibition by azithromycin.” Proceedings of the National Academy of Sciences of the United States of America vol. 113,50 (2016): 14408-14413. doi:10.1073/pnas.1618029113 [CrossRef] [Google Scholar]
  15. Madrid, Peter B et al. “Evaluation of Ebola Virus Inhibitors for Drug Repurposing.” ACS infectious diseases vol. 1,7 (2015): 317-26. doi:10.1021/acsinfecdis.5b00030 [CrossRef] [Google Scholar]
  16. Gielen, V et al. “Azithromycin induces anti-viral responses in bronchial epithelial cells.” The European respiratory journal vol. 36,3 (2010): 646-54. doi:10.1183/09031936.00095809 [CrossRef] [Google Scholar]
  17. Iannetta, Marco et al. “Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells.” Antimicrobial agents and chemotherapy vol. 61,9 e01152-17. 24 Aug. 2017, doi:10.1128/AAC.01152-17 [Google Scholar]
  18. Schögler, Aline et al. “Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells.” The European respiratory journal vol. 45,2 (2015): 428-39. doi:10.1183/09031936.00102014 [CrossRef] [Google Scholar]
  19. Arabi, Yaseen M et al. “Macrolides in critically ill patients with Middle East Respiratory Syndrome.” International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases vol. 81 (2019): 184-190. doi:10.1016/j.ijid.2019.01.041 [CrossRef] [Google Scholar]
  20. Huang, Chaolin et al. “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.” Lancet (London, England) vol. 395,10223 (2020): 497-506. doi:10.1016/S0140-6736(20)30183-5 [CrossRef] [Google Scholar]
  21. Sultana, Janet et al. “Azithromycin in COVID-19 Patients: Pharmacological Mechanism, Clinical Evidence and Prescribing Guidelines.” Drug safetyvol. 43,8 (2020): 691-698. doi:10.1007/s40264-020-00976-7 [CrossRef] [Google Scholar]
  22. Shinkai, Masaharu et al. “Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells.” American journal of physiology. Lung cellular and molecular physiology vol. 290,1 (2006): L75-85. doi:10.1152/ajplung.00093.2005 [CrossRef] [Google Scholar]
  23. Tsai, Wan C et al. “Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection.” American journal of respiratory and critical care medicine vol. 170,12 (2004): 1331-9. doi:10.1164/rccm.200402-200OC [CrossRef] [Google Scholar]
  24. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 — preliminary report. N Engl J Med. 2020[cited 2020May 25];NEJMoa2007764. Available from: http://www.nejm.org/doi/10.1056/NEJMoa200776410.1056/NEJMoa2007764 [Google Scholar]
  25. Zhou, Fei et al. “Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.” Lancet (London, England) vol. 395,10229 (2020): 1054-1062. doi:10.1016/S0140-6736(20)30566-3 [CrossRef] [Google Scholar]
  26. PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;397(10279):1063-1074. doi:10.1016/S0140-6736(21)00461-XPubMedGoogle ScholarCrossref [CrossRef] [Google Scholar]
  27. Cita: Oldenburg CE et al. Effect of oral azithromycin vs placebo on COVID-19 symptoms in outpatients with SARS-CoV-2 infection: A randomized clinical trial. JAMA 2021 Aug 10; 326:490. (https://doi.org/10.1001/jama.2021.11517.) [CrossRef] [Google Scholar]
  28. Gautret, Philippe et al. “Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.” International journal of antimicrobial agents vol. 56,1 (2020): 105949. doi:10.1016/j.ijantimicag.2020.105949 [CrossRef] [Google Scholar]
  29. Manli Wang, Ruiyuan Cao, Leike Zhang, Xinglou Yang, Jia Liu, Mingyue Xu, Zhengli Shi, Zhihong Hu, Wu Zhong, Gengfu Xiao. Cell Res, 30 (3) (2020), pp. 269-271 [CrossRef] [Google Scholar]
  30. Andrea Savarino, Johan R Boelaert, Antonio Cassone, Giancarlo Majori, Roberto Cauda. Lancet Infect Dis, Volume 3, Issue 11, November 2003, Pages 722-727 [CrossRef] [Google Scholar]
  31. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30:269–71. [CrossRef] [Google Scholar]
  32. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv [Google Scholar]
  33. Pradeesh Sivapalan, Charlotte Suppli Ulrik, Therese Sophie et al. “Azithromycin and hydroxychloroquine in hospitalised patients with confirmed COVID-19–a randomised double-blinded placebo-controlled trial” European Respiratory Journal 2021; DOI:10.1183/13993003.00752-2021 [Google Scholar]
  34. Elavarasi, A., Prasad, M., Seth, T. et al. Chloroquine and Hydroxychloroquine for the Treatment of COVID-19: a Systematic Review and Meta-analysis. J GEN INTERN MED 35, 3308–3314 (2020). https://doi.org/10.1007/s11606-020-06146-w [CrossRef] [Google Scholar]
  35. Julien Andreani, Marion Le Bideau, Isabelle Duflot, Priscilla Jardot, Clara Rolland, Manon Boxberger, Nathalie Wurtz, Jean-Marc Rolain, Philippe Colson, Bernard La Scola, Didier Raoult. Microb Pathog, 145 (2020), Article 104228 [Google Scholar]
  36. S. Arshad, P. Kilgore, Z.S. Chaudhry, G. Jacobsen, D.D. Wang, K. Huitsing, et al.Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19 Int J Infect Dis, 97 (2020), pp. 396-403 [CrossRef] [Google Scholar]
  37. Philippe Gautret, Jean-Christophe Lagier, Philippe Parola, Van Thuan Hoang, Line Meddeb, Morgane Mailhe, Barbara Doudier, Johan Courjon, Valérie Giordanengo, Vera Esteves Vieira, Hervé Tissot Dupont, Stéphane Honoré, Philippe Colson, Eric Chabrière, Bernard La Scola, Jean-Marc Rolain, Philippe Brouqui, Didier Raoult. Int J Antimicrob Agents (2020), Article 105949 [Google Scholar]
  38. Matthieu Million, Jean-Christophe Lagier, Philippe Gautret, Philippe Colson, Pierre-Edouard Fournier, Sophie Amrane.Travel MedicineandInfectious DiseaseVolume 35, May–June 2020, 101738 [CrossRef] [Google Scholar]
  39. Wouter Graumans, William J.R. Stone, Teun Bousema. Travel Medicine and Infectious Disease, Volume 44, November–December 2021, 102163 [CrossRef] [Google Scholar]
  40. Ilija UzelacPhD, Abouzar Kaboudian, Shahriar Iravanian. Heart Rhythm O2 Volume 2, Issue 4, August 2021, Pages 394-404 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.