Open Access
Issue
SHS Web Conf.
Volume 189, 2024
The 2nd International Conference on Ergonomics Safety, and Health (ICESH) and the 7th Ergo-Camp (ICESH & Ergo-Camp 2023)
Article Number 01024
Number of page(s) 14
DOI https://doi.org/10.1051/shsconf/202418901024
Published online 09 April 2024
  1. Jasamarga, “Statistik Dan Permasalahan Keselamatan Di Jalan Tol Jasa Marga - Transportation Safety in Indonesia: Research Roadmap and Future Directions” 2022. [Google Scholar]
  2. A. P. Afghari, M. M. Haque, and S. Washington, “Effects Of Roadway Geometrics And Traffic Characteristics On Speeding Behaviour,” no. c, pp. 1–14, 2018. [Google Scholar]
  3. N. Chakrabarty and K. Gupta, “Analysis of Driver Behaviour and Crash Characteristics during Adverse Weather Conditions,” Procedia Soc. Behav. Sci., vol. 104, pp. 1048–1057, 2013, doi: 10.1016/j.sbspro.2013.11.200. [CrossRef] [Google Scholar]
  4. K. Kanitpong, P. Jiwattanakulpaisarn, and W. Yaktawong, “Speed management strategies and drivers’ attitudes in Thailand,” IATSS Res., vol. 37, no. 1, pp. 39–48, 2013, doi: 10.1016/j.iatssr.2012.12.002. [CrossRef] [Google Scholar]
  5. L. Aarts and I. Van Schagen, “Driving speed and the risk of road crashes: A review,” Accid. Anal. Prev., vol. 38, no. 2, pp. 215–224, 2006, doi: 10.1016/j.aap.2005.07.004. [CrossRef] [Google Scholar]
  6. A. M. Pérez-Marín, M. Ayuso, and M. Guillen, “Do young insured drivers slow down after suffering an accident?,” Transp. Res. Part F Traffic Psychol. Behav., vol. 62, pp. 690–699, 2019, doi: 10.1016/j.trf.2019.02.021. [CrossRef] [Google Scholar]
  7. R. Yu and M. Abdel-Aty, “Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data,” Accid. Anal. Prev., vol. 62, pp. 161–167, 2014, doi: 10.1016/j.aap.2013.08.009. [CrossRef] [Google Scholar]
  8. Y. Ge, W. Qu, M. Zhou, T. Özkan, P. Bıçaksız, and K. Zhang, “Psychometric adaption of the impulsive driver behavior scale in a Chinese sample,” Transp. Res. Part F Traffic Psychol. Behav., vol. 68, pp. 218–230, 2020, doi: 10.1016/j.trf.2019.11.004. [CrossRef] [Google Scholar]
  9. H. Qaid et al., “Speed choice and speeding behavior on Indonesian highways: Extending the theory of planned behavior,” IATSS Res., no. xxxx, 2021, doi: 10.1016/j.iatssr.2021.11.013. [Google Scholar]
  10. H. Singh and A. Kathuria, “Analyzing driver behavior under naturalistic driving conditions: A review,” Accid. Anal. Prev., vol. 150, no. December 2020, p. 105908, 2021, doi: 10.1016/j.aap.2020.105908. [Google Scholar]
  11. R. Rusli, M. M. Haque, A. P. Afghari, and M. King, “Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia,” Accid. Anal. Prev., vol. 119, no. March, pp. 80–90, 2018, doi: 10.1016/j.aap.2018.07.006. [CrossRef] [Google Scholar]
  12. A. P. Afghari, M. M. Haque, and S. Washington, “Applying fractional split model to examine the effects of roadway geometric and traffic characteristics on speeding behavior,” Traffic Inj. Prev., vol. 19, no. 8, pp. 860–866, 2018, doi: https://doi.org/10.1080/15389588.2018.1509208. [CrossRef] [Google Scholar]
  13. V. Beanland, “Behavioural adaptation or constraint? The effect of curve proximity on driving behaviour,” Transp. Res. Part F Traffic Psychol. Behav., vol. 86, no. December 2021, pp. 384–391, 2022, doi: 10.1016/j.trf.2022.03.008. [CrossRef] [Google Scholar]
  14. S. Haustein, A. Humpe, and S. Gössling, “Risky and anxious-aggressive drivers: A key barrier to traffic safety legislation in Germany,” Transp. Res. Part F Traffic Psychol. Behav., vol. 89, pp. 84–96, 2022, doi: https://doi.org/10.1016/j.trf.2022.06.005. [CrossRef] [Google Scholar]
  15. C. Atombo, C. Wu, M. Zhong, and H. Zhang, “Investigating the motivational factors influencing drivers intentions to unsafe driving behaviours: Speeding and overtaking violations,” Transp. Res. Part F Traffic Psychol. Behav., vol. 43, pp. 104–121, 2016, doi: 10.1016/j.trf.2016.09.029. [CrossRef] [Google Scholar]
  16. A. Endriulaitienė, L. Šeibokaitė, K. Žardeckaitė-Matulaitienė, R. Markšaitytė, and J. Slavinskienė, “Attitudes towards risky driving and Dark Triad personality traits in a group of learner drivers,” Transp. Res. Part F Traffic Psychol. Behav., vol. 56, pp. 362–370, 2018, doi: 10.1016/j.trf.2018.05.017. [CrossRef] [Google Scholar]
  17. A. A. Etika, N. Merat, and O. Carsten, “Do drivers differ in their attitudes on speed limit compliance between work and private settings? Results from a group of Nigerian drivers,” Transp. Res. Part F Traffic Psychol. Behav., vol. 73, pp. 281–291, 2020, doi: 10.1016/j.trf.2020.06.024. [CrossRef] [Google Scholar]
  18. D. Jovanović, M. Šraml, B. Matović, and S. Mićić, “An examination of the construct and predictive validity of the self-reported speeding behavior model,” Accid. Anal. Prev., vol. 99, pp. 66–76, 2017, doi: 10.1016/j.aap.2016.11.015. [CrossRef] [Google Scholar]
  19. V. Truelove, J. Freeman, E. Szogi, S. Kaye, J. Davey, and K. Armstrong, “Beyond the threat of legal sanctions: What deters speeding behaviours?,” Transp. Res. Part F Traffic Psychol. Behav., vol. 50, pp. 128–136, 2017, doi: 10.1016/j.trf.2017.08.008. [CrossRef] [Google Scholar]
  20. H. C. Shulman, N. Rhodes, E. Davidson, R. Ralston, L. Borghetti, and L. Morr, “The state of the field of social norms research,” Int. J. Commun., vol. 11, pp. 1192–1213, 2017. [Google Scholar]
  21. C. Gauld and C. Reeves, “Normative influences on young drivers’ illegal smartphone use: Applying an extended Theory of Normative Social Behaviour,” Accid. Anal. Prev., vol. 180, no. May 2022, 2023, doi: 10.1016/j.aap.2022.106904. [CrossRef] [Google Scholar]
  22. R. N. Rimal and K. Real, “How behaviors are influenced by perceived norms a test of the theory of normative social behavior,” Communic. Res., vol. 32, no. 3, pp. 389–414, 2005, doi: 10.1177/0093650205275385. [CrossRef] [Google Scholar]
  23. R. N. Rimal and K. Real, “Understanding the influence of perceived norms on behaviors,” Commun. Theory, vol. 13, no. 2, pp. 184–203, 2003, doi: 10.1111/j.1468-2885.2003.tb00288.x. [CrossRef] [Google Scholar]
  24. A. Humpe, S. Gössling, and S. Haustein, “Car careers: A socio-psychological evaluation of aspirational automobile ownership,” Transp. Res. Part A Policy Pract., vol. 164, no. July, pp. 156–166, 2022, doi: 10.1016/j.tra.2022.08.001. [CrossRef] [Google Scholar]
  25. J. Xu, J. Liu, X. Sun, K. Zhang, W. Qu, and Y. Ge, “The relationship between driving skill and driving behavior: Psychometric adaptation of the Driver Skill Inventory in China,” Accid. Anal. Prev., vol. 120, no. July, pp. 92–100, 2018, doi: 10.1016/j.aap.2018.07.032. [Google Scholar]
  26. B. Hussain, H. Sato, T. Miwa, and T. Morikawa, “Influence of personality traits on aberrant driving behaviors: A comparison of Japanese, Chinese, and Vietnamese drivers,” J. Safety Res., vol. 75, pp. 178–188, 2020, doi: 10.1016/j.jsr.2020.09.011. [CrossRef] [Google Scholar]
  27. J. Park et al., “Comparison of the inter-item correlations of the Big Five Inventory-10 (BFI-10) between Western and non-Western contexts,” Pers. Individ. Dif., vol. 196, no. June, pp. 1–3, 2022, doi: 10.1016/j.paid.2022.111751. [CrossRef] [Google Scholar]
  28. B. Rammstedt and O. P. John, “Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German,” J. Res. Pers., vol. 41, no. 1, pp. 203–212, 2007, doi: 10.1016/j.jrp.2006.02.001. [CrossRef] [Google Scholar]
  29. F. Fekih-Romdhane, A. Chahine, M. Mhanna, C. J. El Zouki, S. Obeid, and S. Hallit, “Psychometric properties of an Arabic translation of the briefest version of the Zimbardo time perspective inventory (ZTPI-15),” BMC Psychiatry, vol. 23, no. 1, pp. 1–9, 2023, doi: 10.1186/s12888-023-04815-8. [CrossRef] [Google Scholar]
  30. E. Kocayoruk and O. F. Simsek, “The validity and reliability of the Turkish brief version of the Zimbardo Time Perspective Inventory for adolescents,” Dusunen Adam - J. Psychiatry Neurol. Sci., vol. 33, no. 1, pp. 40–49, 2020, doi: 10.14744/DAJPNS.2019.00059. [Google Scholar]
  31. J. Košťál, M. Klicperová-Baker, K. Lukavská, and J. Lukavský, “Short version of the Zimbardo Time Perspective Inventory (ZTPI–short) with and without the Future-Negative scale, verified on nationally representative samples,” Time Soc., vol. 25, no. 2, pp. 169–192, 2016, doi: 10.1177/0961463X15577254. [CrossRef] [Google Scholar]
  32. V. Linkov, A. Zaoral, P. Řezáč, and C. W. Pai, “Personality and professional drivers’ driving behavior,” Transp. Res. Part F Traffic Psychol. Behav., vol. 60, pp. 105–110, 2019, doi: 10.1016/j.trf.2018.10.017. [CrossRef] [Google Scholar]
  33. G. Orosz, E. Dombi, I. Tóth-Király, and C. Roland-Lévy, “The Less is More: The 17-Item Zimbardo Time Perspective Inventory,” Curr. Psychol., vol. 36, no. 1, pp. 39–47, 2017, doi: 10.1007/s12144-015-9382-2. [CrossRef] [Google Scholar]
  34. Y. Peng, G. Song, M. Guo, L. Wu, and L. Yu, “Investigating the impact of environmental and temporal features on mobile phone distracted driving behavior using phone use data,” Accid. Anal. Prev., vol. 180, no. November 2022, p. 106925, 2023, doi: 10.1016/j.aap.2022.106925. [Google Scholar]
  35. A. Sircova et al., “A global look at time: A 24-country study of the equivalence of the zimbardo time perspective inventory,” SAGE Open, vol. 4, no. 1, pp. 1–12, 2014, doi: 10.1177/2158244013515686. [CrossRef] [Google Scholar]
  36. E. Temple et al., “The Zimbardo time perspective inventory: Time for a new strategy, not more new shortened versions,” Time Soc., vol. 28, no. 3, pp. 1167–1180, 2019, doi: 10.1177/0961463X17718102. [CrossRef] [Google Scholar]
  37. L. Lemarié, F. Bellavance, and J. C. Chebat, “Regulatory focus, time perspective, locus of control and sensation seeking as predictors of risky driving behaviors,” Accid. Anal. Prev., vol. 127, no. February, pp. 19–27, 2019, doi: 10.1016/j.aap.2019.02.025. [Google Scholar]
  38. C. Dong, K. Xie, J. Zeng, and X. Li, “Multivariate dynamic Tobit models with lagged observed dependent variables: An effectiveness analysis of highway safety laws,” Accid. Anal. Prev., vol. 113, no.January, pp. 292–302, 2018, doi: 10.1016/j.aap.2018.01.039. [CrossRef] [Google Scholar]
  39. D. Barić, G. M. Havârneanu, and C. Măirean, “Attitudes of learner drivers toward safety at level crossings: Do they change after a 360° video-based educational intervention?,” Transp. Res. Part F Traffic Psychol. Behav., vol. 69, pp. 335–348, 2020, doi: 10.1016/j.trf.2020.01.018. [CrossRef] [Google Scholar]
  40. A. Vaezipour, A. Rakotonirainy, and N. Haworth, “Reviewing In-vehicle Systems to Improve Fuel Efficiency and Road Safety,” Procedia Manuf., vol. 3, no. Ahfe, pp. 3192–3199, 2015, doi: 10.1016/j.promfg.2015.07.869. [CrossRef] [Google Scholar]
  41. A. Vaezipour, A. Rakotonirainy, N. Haworth, and P. Delhomme, “Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: A qualitative study,” Transp. Res. Part A Policy Pract., vol. 100, pp. 247–263, 2017, doi: 10.1016/j.tra.2017.04.030. [CrossRef] [Google Scholar]
  42. P. Tankasem, T. Satiennam, W. Satiennam, and P. Klungboonkrong, “Automated speed control on urban arterial road: An experience from Khon Kaen City, Thailand,” Transp. Res. Interdiscip. Perspect., vol. 1, pp. 1–8, 2019, doi: 10.1016/j.trip.2019.100032. [Google Scholar]
  43. S. E. Brewster, M. A. Elliott, and S. W. Kelly, “Evidence that implementation intentions reduce drivers’ speeding behavior: Testing a new intervention to change driver behavior,” Accid. Anal. Prev., vol. 74, pp. 229–242, 2015, doi: 10.1016/j.aap.2014.11.006. [CrossRef] [Google Scholar]
  44. B. Tekeş and T. Özkan, “The effect of implementation intention on speeding and acceleration overtime: A simulator study,” Transp. Res. Part F Traffic Psychol. Behav., vol. 83, no. October, pp. 323–332, 2021, doi: 10.1016/j.trf.2021.10.011. [CrossRef] [Google Scholar]
  45. N. Tahsin, “PRISMA Framework for Systematic Literature Review,” https://medium.com/@bsse0914/prisma-framework-for-systematic-literature-review-ec8b54872bf1, accessed June 2023 [Google Scholar]
  46. C. Horvath, I. Lewis, and B. Watson, “Peer passenger identity and passenger pressure on young drivers’ speeding intentions,” Transp. Res. Part F Traffic Psychol. Behav., vol. 15, no. 1, pp. 52–64, 2012, doi: 10.1016/j.trf.2011.11.008. [CrossRef] [Google Scholar]
  47. PP No 79 tahun 2013, “PP Republik Indonesia Nomor 79 Tahun 2013 Tentang Jaringan Lalu Lintas dan Angkutan Jalan,” Jar. Lalu Lintas Dan Angkut. Jalan, no. Peraturan pemerintah republik Indonesia, pp. 1–97, 2013. [Google Scholar]
  48. I. Ajzen, Attitudes, Personality and Behavior (Second Edition). 2005. doi: 10.1037/e418632008-001. [Google Scholar]
  49. J. F. H. Jr, W. C. Black, B. J. Babin, R. E. Anderson, W. C. Black, and R. E. Anderson, Multivariate Data Analysis. 2018. doi: 10.1002/9781119409137.ch4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.