Open Access
Issue
SHS Web Conf.
Volume 201, 2024
1st International Conference on Digital Technologies and Sustainability Accounting (ICDSA 2024)
Article Number 01007
Number of page(s) 27
Section Sustainable Accounting and Finance Policy
DOI https://doi.org/10.1051/shsconf/202420101007
Published online 08 November 2024
  1. Machkour, B., & Abriane, A. Industry 4.0 and its Implications for the Financial Sector. Procedia Computer Science, 177, 496–502 (2020). [CrossRef] [Google Scholar]
  2. Ediagbonya, V., & Tioluwani, C The role of fintech in driving financial inclusion in developing and emerging markets: issues, challenges, and prospects. Technological Sustainability, 2(1), 100–119 (2023). [CrossRef] [Google Scholar]
  3. Yan, C., Siddik, A.B., Akter, N., & Dong, Q. Factors influencing the adoption intention of using mobile financial services during the COVID-19 pandemic: The role of FinTech. Environmental Science and Pollution Research, 1–19 (2021). [Google Scholar]
  4. Cao, L., Yang, Q., & Yu, P. S. Data science and AI in FinTech: An overview. International Journal of Data Science and Analytics, 12(2), 81–99 1998 (2021). [CrossRef] [Google Scholar]
  5. Hidayat, K., & Idrus, MI The effect of relationship marketing towards switching barriers, customer satisfaction, and customer trust on bank customers. Journal of Innovation and Entrepreneurship, 12(1), 29 (2023). [CrossRef] [Google Scholar]
  6. Bank Indonesia. Statistik Sistem Pembayaran dan Infrastruktur Pasar Keuangan. (2022). https://www.bi.go.id/id/statistik/ekonomi-keuangan/spip/Default.aspx. [Google Scholar]
  7. Populix. Milenial di Indonesia Aktif Menggunakan Paylater. (2022) https://info.populix.co/reports. [Google Scholar]
  8. Bansal, H. S “Migrating” to New Service Providers: Toward a Unifying Framework of Consumers’ Switching Behaviors. Journal of the Academy of Marketing Science, 33(1), 96–115. (2005). https://doi.org/10.1177/0092070304267928 [CrossRef] [Google Scholar]
  9. Guo, J., Shan, S., Wang, Y., & Khan, Y.A. Analyzing Chinese Customers’ Switching Intention of Smartphone Brands: Integrating the Push‐Pull‐Mooring Framework. Discrete Dynamics in Nature and Society, (1), 6660340. (2021). [Google Scholar]
  10. Lin, C.L., Jin, Y.Q., Zhao, Q., Yu, S.W., & Su, Y.S. Factors influencing students’ switching behavior to online learning under COVID-19 pandemic: A push–pull– mooring model perspective. The Asia-Pacific Education Researcher, 30, 229–245. (2021). [CrossRef] [Google Scholar]
  11. Lisana, L. Factors affecting university students switching intention to mobile learning: a push-pull-mooring theory perspective. Education and Information Technologies, 28(5), 5341–5361 (2023). [CrossRef] [Google Scholar]
  12. Barbu, CM, Florea, DL, Dabija, DC, & Barbu, MCR. Customer experience in fintech. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1415–1433 (2021). [CrossRef] [Google Scholar]
  13. Hidayat, K., & Idrus, MI The effect of relationship marketing towards switching barriers, customer satisfaction, and customer trust on bank customers. Journal of Innovation and Entrepreneurship, 12(1), 29. (2023). [CrossRef] [Google Scholar]
  14. Marchildon, P., & Hadaya, P. (2022). Understanding the impacts of increasing returns in the context of social media use. Information Technology & People, 35(3), 1136–1169. [CrossRef] [Google Scholar]
  15. Watermeyer, R., Crick, T., Knight, C., & Goodall, J. COVID-19 and digital disruption in UK universities: Afflictions and affordances of emergency online migration. Higher education, 81, 623–641 (2021). [CrossRef] [Google Scholar]
  16. Tang, K. L., Hooi, R., & Tang, P. Factors influence switching intention to m-payment using push-pull-mooring framework during the coronavirus pandemic in Malaysia. Asian Journal of Research in Business and Management, 4(3), 639–657 (2022). [Google Scholar]
  17. Adirinekso, G. P., & Assa, A. F. Is There Any Customer Switching the Intention from Traveloka PayLater to Traveloka PayLater Card? A Preliminary Investigation on Worker in Jakarta. In Ninth International Conference on Entrepreneurship and Business Management (ICEBM 2020) (pp. 570–577). May, Atlantis Press (2021). [Google Scholar]
  18. Lu, H. P., & Wung, Y. S. Applying transaction cost theory and push-pull-mooring model to investigate mobile payment switching behaviors with well-established traditional financial infrastructure. Journal of theoretical and applied electronic commerce research, 16(2), 1–21 (2021). [Google Scholar]
  19. Adirinekso, G. P., Budiono, S., & Purba, J. T. Switching Intention of ATM Link to Digital Transactions in Responding Himbara’s Bank New Policy: PPM Framework Perspective. In Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management (2021). [Google Scholar]
  20. Yoon, C., & Lim, D. Customers’ intentions to switch to internet-only banks: Perspective of the push-pull-mooring model. Sustainability, 13(14), 8062 (2021). [CrossRef] [Google Scholar]
  21. Mu, H. L., & Lee, Y. C. How inclusive digital financial services impact user behavior: A case of proximity mobile payment in Korea. Sustainability, 13(17), 9567 (2021). [CrossRef] [Google Scholar]
  22. Tanuwijaya, E., & Oktavia, T. Analysis of the Factors Influencing Customer Switching Behaviour of The Millennials in Digital Banks. Journal of System and Management Sciences, 13(2), 122–133 (2023). [Google Scholar]
  23. Fan, L., Zhang, X., Rai, L., & Du, Y. Mobile payment: the next frontier of payment systems? -an empirical study based on push-pull-mooring framework. Journal of theoretical and applied electronic commerce research, 16(2), 155–169 (2021). [Google Scholar]
  24. Njite, D., Kim, W.G., & Kim, L.H. Theorizing Consumer Switching Behavior: A General Systems Theory Approach. Journal of Quality Assurance in Hospitality & Tourism, 9(3), 185–218 (2008). https://doi.org/10.1080/15280080802412701 [CrossRef] [Google Scholar]
  25. Sekaran, U., & Bougie, R. Research Methods for Business: Skills Development Approaches 6th Edition Book 2 (2017). [Google Scholar]
  26. Sugiyono, PD Business research methods: quantitative, qualitative, combined, and R&D approaches. CV Publisher. Alphabeta: Bandung, 225, 87 (2017). [Google Scholar]
  27. Alsa, A. (nd). Assumption Test Controversy in Parametric Statistics. [Google Scholar]
  28. Zengyan, Cheng; Yinping, Yang; Lim, John. Cyber migration: An empirical investigation on factors that affect users’ switch intentions in social networking sites. In: 2009 42nd Hawaii International Conference on System Sciences. IEEE, p. 1–11 (2009). [Google Scholar]
  29. Hou, A., Shang, R. A., Huang, C. C., & Wu, K. L. The Effects of Push-Pull-Mooring on The Switching Model for Social Network Sites Migration. (2014). [Google Scholar]
  30. Fei, Liu; Bo, Xiao. Do I switch? Understanding users’ intention to switch between social network sites. In: 2014 47th Hawaii International Conference on System Sciences. IEEE, p. 551–560 (2014). [Google Scholar]
  31. Zhou, Tao. Examining user switch between mobile stores: A push-pull-mooring perspective. Information Resources Management Journal (IRMJ), 29(2), 1–13 (2016). [Google Scholar]
  32. Chang, Hsin Hsin; Wong, Kit Hong; Li, Shi Yu. Applying push-pull-mooring to investigate channel switching behaviors: M-shopping self-efficacy and switching costs as moderators. Electronic Commerce Research and Applications, 24: 50–67 (2017). [CrossRef] [Google Scholar]
  33. Fang, Yu-Hui; Tang, Kwei. Involuntary migration in cyberspaces: The case of MSN messenger discontinuation. Telematics and Informatics, 34, 1, 177–193 (2017). [CrossRef] [Google Scholar]
  34. Tang, Zhenya; Chen, Leida. An empirical study of brand microblog users’ unfollowing motivations: The perspective of push-pull-mooring model. International Journal of Information Management, 52: 102066 (2020). [CrossRef] [Google Scholar]
  35. Murti, Wahyu Wijaya, et al. Analisis Faktor-Faktor Yang Mempengaruhi Minat Beli Ulang Masyarakat Terhadap Produk Handphone. Value Added: Majalah Ekonomi dan Bisnis, 8(2) (2012). [Google Scholar]
  36. Pranasyahputra, Rachmad Hidayat; Elen, Trismayarni; Dewi, Kurnia Sari. Pengaruh Leverage, Kompetisi, Dan Pertumbuhan Perusahaan Terhadap Carbon Emission Disclosure. Jurnal Akuntansi Trisakti, 7, 1, 75–88 (2020). [CrossRef] [Google Scholar]
  37. Mujaddid, Fajar; Nugroho, Pandu Tezar Adi; Adi, Pandu Tezar. Pengaruh pengetahuan, reputasi, lingkungan dan religiusitas terhadap minat pelajar Sekolah Menengah Kejuruan prodi perbankan Syariah dalam menabung di bank Syariah. Jurnal Ekonomi Islam, 10(1): 14–37 (2019). [Google Scholar]
  38. Chandra, Alvin, et al. Gendered vulnerabilities of smallholder farmers to climate change in conflict-prone areas: A case study from Mindanao, Philippines. Journal of rural studies, 50: 45–59 (2010). [Google Scholar]
  39. Ye, C. & Potter, R. The role of habit in post-adoption switching of personal information technologies: an empirical investigation. Communications of the Association for Information Systems, 28, 585–610 (2011). [CrossRef] [Google Scholar]
  40. Anwar, R. N., & Afifah, A.. Kepercayaan dan keamanan konsumen terhadap minat beli di situs online (Studi kasus pengunjung situs Lazada di Jakarta Timur). Jurnal Manajemen (Edisi Elektronik), 9(1), 46–57 (2018). [Google Scholar]
  41. Hsieh, Jung-Kuei, et al. Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. Computers in Human Behavior, 28(5): 1912–1920 (2012). [CrossRef] [Google Scholar]
  42. Cheng, Shuang; Lee, Sang-Joon; Choi, Beomjin. An empirical investigation of users’ voluntary switching intention for mobile personal cloud storage services based on the push-pull-mooring framework. Computers in Human Behavior, 92, 198–215 (2019). [CrossRef] [Google Scholar]
  43. Afandi, Muhammad Anif. Switching intentions among millennial banking customers to fintech lending. International Journal of Islamic Economics and Finance (IJIEF), 3(2): 283–304 (2020). [CrossRef] [Google Scholar]
  44. Jung, Jishim; Han, Heesup; Oh, Mihae. Travelers’ switching behavior in the airline industry from the perspective of the push-pull-mooring framework. Tourism Management, 59: 139–153 (2017). [CrossRef] [Google Scholar]
  45. Chen, Yu-Hsin; Keng, Ching-Jui. Utilizing the Push-Pull-Mooring-Habit framework to explore users’ intention to switch from offline to online real-person English learning platform. Internet Research, 29(1): 167–193 (2019). [CrossRef] [Google Scholar]
  46. Hsieh, Pi-Jung. Understanding medical consumers’ intentions to switch from cash payment to medical mobile payment: A perspective of technology migration. Technological Forecasting and Social Change, 173, 121074 (2021). [CrossRef] [Google Scholar]
  47. Zeng, Zhongping, et al. Switching behavior in the adoption of a land information system in China: A perspective of the push–pull–mooring framework. Land Use Policy, 109: 105629 (2021). [CrossRef] [Google Scholar]
  48. Marseto, F., Handayani, P. W., & Pinem, A. A. Push, Pull, and Mooring Evaluation of User Switching Intention from Social Commerce to E-Commerce. 2019 In International Conference on Information Management and Technology vol. 1 (2019). [Google Scholar]
  49. Lin, Tung-Ching; Huang, Shiu-Li. Understanding the determinants of consumers’ switching intentions in a standards war. International Journal of Electronic Commerce, 19. 1, 163–189 (2014). [CrossRef] [Google Scholar]
  50. Sun, Yongqiang, et al. Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework. Computers in Human Behavior, 75, 727–738 (2017). [CrossRef] [Google Scholar]
  51. Fan, Liu, et al. Mobile payment: the next frontier of payment systems?-an empirical study based on push-pull-mooring framework. Journal of theoretical and applied electronic commerce research, 16, 2, 155–169 (2021). [Google Scholar]
  52. Purwandari, Betty, et al. Factors affecting switching intention from cash on delivery to e-payment services in C2C E-commerce transactions: COVID-19, transaction, and technology perspectives. Emerging Science Journal, 6, 9, 136–150 (2022). [CrossRef] [Google Scholar]
  53. Wang, Y., Quan, M., & Zhou, Y. Effect of velocity non-uniformity of supply air on the mixing characteristics of push-pull ventilation systems. Energy, 187, 115962 (2019). [CrossRef] [Google Scholar]
  54. Loh, X. M., Lee, V. H., Tan, G. W. H., Ooi, K. B., & Dwivedi, Y. K. Switching from cash to mobile payment: what’s the hold-up?. Internet Research, 31(1), 376–399 (2021). [Google Scholar]
  55. Suh, C. J., & Kim, J. H. Buyers’ switching intentions in a manufacturing supply chain: A migration theory perspective. International Journal of Operations & Production Management, 12, 2246–2265 (2018). https://doi.org/https://doi.org/10.1108/IJOPM-02-2017-011 [CrossRef] [Google Scholar]
  56. Li, C. Y. Consumer behavior in switching between membership cards and mobile applications: The case of Starbucks. Computers in Human Behavior, 84, 7, 171–184 (2018). https://doi.org/https://doi.org/10.1016/j.chb.2017.12.042 [CrossRef] [Google Scholar]
  57. Kuo, Ren-Zong. Why do people switch mobile payment service platforms? An empirical study in Taiwan. Technology in Society, 62: 101312 (2020). [CrossRef] [Google Scholar]
  58. Hou, A. C., Chern, C. C., Chen, H. G., & Chen, Y. C. ‘Migrating to a new virtual world’: Exploring MMORPG switching through human migration theory. Computers in Human Behavior, 27, 5, 18921903 (2011). https://doi.org/https://doi.org/10.1016/j.chb.2011.04.013 [CrossRef] [Google Scholar]
  59. Lai, J. Y., Debbarma, S., & Ulhas, K. R An empirical study of consumer switching behaviour towards mobile shopping: a Push–Pull–Mooring model. International Journal of Mobile Communications, 10(4), 386–404 (2012). [CrossRef] [Google Scholar]
  60. Chang, I. C., Liu, C. C., & Chen, K. The push, pull and mooring effects in virtual migration for social networking sites. Information Systems Journal, 24(4), 323–346 (2014). [CrossRef] [Google Scholar]
  61. Hasibuan, Sabrina Romadona. Analisis Faktor-Faktor yang Mempengaruhi Perilaku Switching dari Pelanggan Pascabayar Ke Prabayar Pada Pt. Pln Ulp Panam. Uin Sultan Syarif Kasimriau (2021). [Google Scholar]
  62. Handarkho, Y. D., Khaerunnisa, K., & Michelle, B. Factors affecting the intentions of youngsters in switching to a virtual third place amidst the COVID-19 pandemic: the place attachment and push-pull mooring theory. Global Knowledge, Memory and Communication, 72(1/2), 119–137 (2021). [Google Scholar]
  63. Andrianto, Aries. Faktor yang mempengaruhi behavior intention untuk penggunaan aplikasi dompet digital menggunakan model UTAUT2. Jurnal ilmiah ekonomi bisnis, 25, 2, 111–122 (2020). [CrossRef] [Google Scholar]
  64. Sujarweni, VW SPSS for Research. Yogyakarta: New library press. (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.