Open Access
Issue
SHS Web Conf.
Volume 203, 2024
SCAN’24 - 11e Séminaire de Conception Architecturale Numérique AI & Architecture
Article Number 02004
Number of page(s) 12
Section Héritage
DOI https://doi.org/10.1051/shsconf/202420302004
Published online 13 November 2024
  1. M. Dhouib, De la construction de connaissances à la création: modélisation du processus de conception architecturale (ENAU, UCAR, Tunis, 2004) [Google Scholar]
  2. K. Bouaita, Rétro-conception architecturale: le modèle des thermes impériaux romains de tunisie (ENAU, UCAR, Tunis, 2015) [Google Scholar]
  3. I. Soussi, Rétroconception paramétrique des thermes impériaux de Rome (ENAU, UCAR, Tunis, 2019) [Google Scholar]
  4. E. J. Chikofsky and J. H. Cross, Reverse engineering and design recovery: a taxonomy, IEEE Software 7, 13 (1990) [CrossRef] [Google Scholar]
  5. D. Claeys and Z. Naifer, Méthodes de reconception architecturale: imitation, modularité, typologie et paramétrisme, DNArchi 2 (2022) [Google Scholar]
  6. Polybe, Histoire de Polybe. Tome 2 / nouvellement traduite du grec, aux dépens de la Compagnie Amsterdam (1729) [Google Scholar]
  7. D. Claeys, Physiological and cognitive discontinuities: From mythical mediation to implicit discretization of architectural design tools, Frontiers of Architectural Research 12, 1 (2023) [CrossRef] [Google Scholar]
  8. J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, AI Magazine 27, 12 (2006) [Google Scholar]
  9. W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics 5, 4 (1943) [Google Scholar]
  10. D. O. Hebb, The Organization of Behavior. A Neuropsychological Theory (John Wiley & Sons, New York, NY, 1949) [Google Scholar]
  11. A. L. Samuel, Some studies in machine learning using the game of checkers, IBM Journal of Research and Development 3, 3 (1959) [Google Scholar]
  12. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review 65, 6 (1958) [Google Scholar]
  13. J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences 79, 8 (1982) [Google Scholar]
  14. Rumelhart, D. E., J. Mcclelland, and J. L., Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1. Foundations (1986) [CrossRef] [Google Scholar]
  15. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Francisco, 1988) [Google Scholar]
  16. Y. Le Cun, Y. Bengio, and G. Hinton, Deep Learning, Nature 521, 7553 (2015) [Google Scholar]
  17. P. Lemberger, M. Batty, M. Morel, and J.-L. Raffaëlli, Big Data et Machine Learning. Les concepts et les outils de la data science (Dunod, Paris, 2015) [Google Scholar]
  18. L. C. Yann Le Cun, Quand la machine apprend. La révolution des neurones artificiels et de l’apprentissage profond (Odile Jacob, 2019) [Google Scholar]
  19. R. Razavi-Far, A. Ruiz-Garcia, V. Palade, and J. Schmidhuber, editors, Generative Adversarial Learning: Architectures and Applications (Springer International, Cham, 2022) [Google Scholar]
  20. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Networks, Proceedings of the 27th International Conference on Neural Information Processing Systems 2, (2014), pp. 2672–2680 [Google Scholar]
  21. X. Marsault, Reconnaissance automatique de réseaux viaires urbains plausibles via un algorithme d’optimisation par colonies de fourmis, Ingénierie des systèmes d’information 17, 1 (2012) [Google Scholar]
  22. X. Marsault and H. M.-C. Nguyen, Les GANs: stimulateurs de créativité en phase d’idéation, SHS Web of Conferences 147, 2 (2022) [Google Scholar]
  23. W. Huang and H. Zheng, Architectural Drawings Recognition and Generation through Machine Learning, Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (2018), pp. 156–165 [Google Scholar]
  24. S. Chaillou, L’intelligence artificielle au service de l’architecture (Le Moniteur, Paris, 2021) [Google Scholar]
  25. S. Chaillou, AI + Architecture | Towards a New Approach (GSD, Harvard University, 2019) [Google Scholar]
  26. E. E. Viollet-le-Duc, Dictionnaire raisonné de l’architecture française du XIe au XVIe siècle (A. Morel, Paris, 1866) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.