Open Access
Issue |
SHS Web Conf.
Volume 204, 2024
1st International Graduate Conference on Digital Policy and Governance Sustainability (DiGeS-Grace 2024)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 10 | |
Section | Economics in Smart Society | |
DOI | https://doi.org/10.1051/shsconf/202420402011 | |
Published online | 25 November 2024 |
- M.K. Hossain, A. Srivastava, G.C. Oliver, M.E. Islam, N.A. Jahan, R. Karim, T. Kanij, T.H. Mahdi, Adoption of artificial intelligence and big data analytics: an organizational readiness perspective of the textile and garment industry in Bangladesh, Bus. Process Manag. J. (2024). https://doi.org/10.1108/BPMJ-11-2023-0914. [Google Scholar]
- D.D. Wu, W.K. Härdle, Service data analytics and business intelligence 2017, Comput. Stat. 35 (2020) 423–426. [CrossRef] [Google Scholar]
- C. Choksuchat, K.W.-N. Jetwanna, S. Saewong, Y. Rosoon, S. Kanghae, Results of Using Business Intelligence Forecasting Customer Insight of World Integrated Suvarnabhumi Education Platform, in: Int. Conf. Smart Learn. Environ., 2023: pp. 61–70. [Google Scholar]
- A. Kumar, B. Krishnamoorthy, Business analytics adoption in firms: A qualitative study elaborating TOE framework in India, Int. J. Glob. Bus. Compet. 15 (2020) 8093. [Google Scholar]
- D. Nam, J. Lee, H. Lee, Business analytics adoption process: An innovation diffusion perspective, Int. J. Inf. Manage. 49 (2019) 411–423. https://doi.org/10.1016/j.ijinfomgt.2019.07.017. [CrossRef] [Google Scholar]
- O.M. Horani, A. Khatibi, A.R. Al-Soud, J. Tham, A.S. Al-Adwan, Determining the Factors Influencing Business Analytics Adoption at Organizational Level: A Systematic Literature Review, Big Data Cogn. Comput. 7 (2023). https://doi.org/10.3390/bdcc7030125. [Google Scholar]
- T. Ahad, P. Busch, Exploring the factors influencing Mobile-based Ubiquitous System adoption in the Bangladesh RMG sector: A view through DOI and TOE, Electron. J. Inf. Syst. Dev. Ctries. 90 (2024) 1–39. https://doi.org/10.1002/isd2.12291. [Google Scholar]
- T.W. Chi, I. Mahmud, Business Intelligence System Adoption: a Systematic Literature Review of Two Decades, Int. J. Ind. Manag. 6 (2020) 1–8. https://doi.org/10.15282/ijim.6.0.2020.5624. [CrossRef] [Google Scholar]
- A.M. Stjepić, M. Pejić Bach, V. Bosilj Vukšić, Exploring Risks in the Adoption of Business Intelligence in SMEs Using the TOE Framework, J. Risk Financ. Manag. 14 (2021). https://doi.org/10.3390/jrfm14020058. [Google Scholar]
- W. Boonsiritomachai, G.M. McGrath, S. Burgess, Exploring business intelligence and its depth of maturity in Thai SMEs, Cogent Bus. Manag. 3 (2016). https://doi.org/10.1080/23311975.2016.1220663. [Google Scholar]
- H. Tian, S.K. Otchere, C.P.K. Coffie, I.A. Mensah, R.K. Baku, Supply chain integration, interfirm value co-creation and firm performance nexus in ghanaian smes: Mediating roles of stakeholder pressure and innovation capability, Sustain. 13 (2021) 1–18. https://doi.org/10.3390/su13042351. [Google Scholar]
- A. Al-Okaily, A.P. Teoh, M. Al-Okaily, Evaluation of data analytics-oriented business intelligence technology effectiveness: an enterprise-level analysis, Bus. Process Manag. J. 29 (2023) 777–800. [CrossRef] [Google Scholar]
- S. Ahmad, S. Miskon, R. Alabdan, I. Tlili, Towards sustainable textile and apparel industry: Exploring the role of business intelligence systems in the era of industry 4.0, Sustainability 12 (2020) 2632. [CrossRef] [Google Scholar]
- V. Bhatiasevi, M. Naglis, Elucidating the determinants of business intelligence adoption and organizational performance, Inf. Dev. 36 (2020) 78–96. https://doi.org/10.1177/0266666918811394. [CrossRef] [Google Scholar]
- R. Lavanya, Y. Sandhya, G. Sruthi, K. Hasrutha, M. Mohanty, U.M. Krishna, K. Irael, Role of Bi tools to enhance business performance, in: AIP Conf. Proc., 2024. [Google Scholar]
- R. Chaudhuri, S. Chatterjee, D. Vrontis, A. Thrassou, Adoption of robust business analytics for product innovation and organizational performance: the mediating role of organizational data-driven culture, Ann. Oper. Res. (2021) 1–35. [Google Scholar]
- J. Hair, Jr., J.F. Hair, Jr., G.T.M. Hult, C.M. Ringle, M. Sarstedt, A primer on partial least squares structural equation modeling (PLS-SEM), Sage publications, 2021. [CrossRef] [Google Scholar]
- M. Sarstedt, J.F. Hair, Jr., J.-H. Cheah, J.-M. Becker, C.M. Ringle, How to specify, estimate, and validate higher-order constructs in PLS-SEM, Australas. Mark. J. 27 (2019) 197–211. [CrossRef] [Google Scholar]
- J.F. Hair, J.J. Risher, M. Sarstedt, C.M. Ringle, When to use and how to report the results of PLS-SEM, Eur. Bus. Rev. 31 (2019) 2–24. https://doi.org/10.1108/EBR-11-2018-0203. [CrossRef] [Google Scholar]
- S.P. Hair, Jr., J. F., Sarstedt, M., Ringle, C. M., & Gudergan, Advanced issues in partial least squares structural equation modeling. saGe publications., 6 (2018) 297. [Google Scholar]
- C. Fornell, D.F. Larcker, Evaluating structural equation models with unobservable variables and measurement error, J. Mark. Res. 18 (1981) 39–50. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.