Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01021
Number of page(s) 7
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601021
Published online 23 May 2025
  1. C.H. Bock, G.H. Poole, P.E. Parker, T.R. Gottwald, Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 29(2), 59–107 (2010). https://doi.org/10.1080/07352681003617285 [CrossRef] [Google Scholar]
  2. K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://doi.org/10.1016/j.compag.2018.01.009 [CrossRef] [Google Scholar]
  3. Food and Agriculture Organization of the United Nations (FAO), The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All (FAO, 2021) [Google Scholar]
  4. M. Rao, S. Kumar, K. Rao, Effective medical leaf identification using hybridization of GMMCNN. Int. J. Exp. Res. Rev. 32, 115–123 (2023) [CrossRef] [Google Scholar]
  5. M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415 [CrossRef] [Google Scholar]
  6. P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11(4), 77–96 (2020) [Google Scholar]
  7. A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016 [CrossRef] [Google Scholar]
  8. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539 [CrossRef] [Google Scholar]
  9. L. Alamer, I.M. Alqahtani, E. Shadadi, Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. J. Internet Serv. Inf. Secur. 13(1), 01–10 (2023) [Google Scholar]
  10. A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U. Steiner, E.C. Oerke, Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128, 21–30 (2013). https://doi.org/10.1016/j.rse.2012.09.019 [CrossRef] [Google Scholar]
  11. N. McRoberts, C. Hall, L.V. Madden, G. Hughes, Perceptions of disease risk: From social construction of subjective judgments to rational decision making. Phytopathology 104(6), 692–701 (2014). https://doi.org/10.1094/PHYTO-04-10-0126 [CrossRef] [Google Scholar]
  12. H. Leung, Y. Zhu, I. Revilla-Molina, J.X. Fan, H. Chen, I. Pangga, T.W. Mew, Using genetic diversity to achieve sustainable rice disease management. Plant Dis. 87(10), 1156–1169 (2003). https://doi.org/10.1094/PDIS.2003.87.10.1156 [CrossRef] [Google Scholar]
  13. S.P. Mohanty, D.P. Hughes, M. Salathé, Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016). https://doi.org/10.3389/fpls.2016.01419 [CrossRef] [Google Scholar]
  14. P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10(1), 48–55 (2020) [Google Scholar]
  15. D.I. Patrício, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018). https://doi.org/10.1016/j.compag.2018.08.001 [CrossRef] [Google Scholar]
  16. A. Singh, B. Ganapathysubramanian, A.K. Singh, S. Sarkar, Machine learning for highthroughput stress phenotyping in plants. Trends Plant Sci. 21(2), 110–124 (2016). https://doi.org/10.1016/j.tplants.2015.10.015 [CrossRef] [Google Scholar]
  17. S. Wolfert, L. Ge, C. Verdouw, M.J. Bogaardt, Big data in smart farming -A review. Agric. Syst. 153, 69–80 (2017). https://doi.org/10.1016/j.agsy.2017.01.023 [CrossRef] [Google Scholar]
  18. S. Das, A. Biswas, P. Sinha, Deep learning analysis of rice blast disease using remote sensing images. IEEE Geosci. Remote Sens. Lett. 20, 1–5 (2023). https://doi.org/10.1109/LGRS.2023.3237864 [CrossRef] [Google Scholar]
  19. Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8(3), 214–232 (2023) [Google Scholar]
  20. R. Akhter, S.A. Sofi, Decision Making in Precision Agriculture Using IoT and Machine Learning: A Focus on Rice Diseases, in 2024 International Conference on Decision Aid Sciences and Applications (DASA), IEEE, pp. 1–4 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.