Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01064
Number of page(s) 12
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601064
Published online 23 May 2025
  1. A. Soussi, E. Zero, R. Sacile, D. Trinchero, M. Fossa, Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 24, 2647 (2024). https://doi.org/10.3390/s24082647 [CrossRef] [Google Scholar]
  2. C. van Leeuwen, G. Sgubin, B. Bois, N. Ollat, D. Swingedouw, S. Zito, G.A. Gambetta, Climate change impacts and adaptations of wine production. Nature Reviews Earth & Environment 5, 258–275 (2024). https://doi.org/10.1038/s43017-024-00521-5 [CrossRef] [Google Scholar]
  3. S. Yu, X. Liu, Q. Tan, Z. Wang, B. Zhang, Sensors, systems, and algorithms of 3D reconstruction for smart agriculture and precision farming: A review. Computers and Electronics in Agriculture 224, 109229 (2024). https://doi.org/10.1016/j.compag.2024.109229 [CrossRef] [Google Scholar]
  4. M. Marzoa Tanco, G. Trinidad Barnech, F. Andrade, J. Baliosian, M. LLofriu, J.M. Di Martino, G. Tejera, Magro dataset: A dataset for simultaneous localization and mapping in agricultural environments. The International Journal of Robotics Research 43, 591–601 (2024). https://doi.org/10.1177/02783649231210011 [CrossRef] [Google Scholar]
  5. J.C. Miranda, Open source software and benchmarking of computer vision algorithms for apple fruit detection, fruit sizing, and yield prediction using RGB-D cameras (2024) [Google Scholar]
  6. S. Häring, S. Folawiyo, M. Podguzova, S. Krauß, D. Stricker, Vid2Cuts: A Framework for Enabling AI-Guided Grapevine Pruning. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3350649 [Google Scholar]
  7. S.M. Yasir, A.M. Sadiq, H. Ahn, 3D instance segmentation using deep learning on RGB-D indoor data. arXiv preprint arXiv:2406.14581 (2024) [Google Scholar]
  8. J.U.M. Akbar, S.F. Kamarulzaman, A.J.M. Muzahid, M.A. Rahman, M. Uddin, A comprehensive review on deep learning assisted computer vision techniques for smart greenhouse agriculture. IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3350075 [Google Scholar]
  9. R.R. Shamshiri, E. Navas, V. Dworak, F.A.A. Cheein, C. Weltzien, A modular sensing system with CANBUS communication for assisted navigation of an agricultural mobile robot. Computers and Electronics in Agriculture 223, 109112 (2024). https://doi.org/10.1016/j.compag.2024.109112 [CrossRef] [Google Scholar]
  10. S. Duobiene, R. Simniškis, G. Račiukaitis, Enabling Seamless Connectivity: Networking Innovations in Wireless Sensor Networks for Industrial Application. Sensors 24, 4881 (2024). https://doi.org/10.3390/s24154881 [CrossRef] [Google Scholar]
  11. M. Mhamed, Z. Zhang, J. Yu, Y. Li, M. Zhang, Advances in Apple's automated orchard equipment: A comprehensive research. Computers and Electronics in Agriculture 221, 108926 (2024). https://doi.org/10.1016/j.compag.2024.108926 [CrossRef] [Google Scholar]
  12. A. Hussain, S.R. Mehdi, A Comprehensive Review: 3d Object Detection Based on Visible Light Camera, Infrared Camera, and Lidar in Dark Scene (2024) [Google Scholar]
  13. M. Gavrilović, D. Jovanović, P. Božović, P. Benka, M. Govedarica, Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery. Remote Sensing 16, 584 (2024). https://doi.org/10.3390/rs16030584 [CrossRef] [Google Scholar]
  14. S. Ruess, G. Paulus, S. Lang, Automated Derivation of Vine Objects and Ecosystem Structures Using UAS-Based Data Acquisition, 3D Point Cloud Analysis, and OBIA. Applied Sciences 14, 3264 (2024). https://doi.org/10.3390/app14083264 [CrossRef] [Google Scholar]
  15. I. Terzi, M.M. Ozguven, A. Yagci, Automatic detection of grape varieties with the newly proposed CNN model using ampelographic characteristics. Scientia Horticulturae 334, 113340 (2024). https://doi.org/10.1016/j.scienta.2024.113340 [CrossRef] [Google Scholar]
  16. Z. Jiao, K. Huang, Q. Wang, Z. Zhong, Y. Cai, Real-time litchi detection in complex orchard environments: a portable, low-energy edge computing approach for enhanced automated harvesting. Artificial Intelligence in Agriculture 11, 13–22 (2024). https://doi.org/10.1016/j.aiia.2023.05.001 [CrossRef] [Google Scholar]
  17. E.K. Ruby, G. Amirthayogam, G. Sasi, T. Chitra, A. Choubey, S. Gopalakrishnan, Advanced Image Processing Techniques for Automated Detection of Healthy and Infected Leaves in Agricultural Systems. Mesopotamian Journal of Computer Science, 62–70 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.