Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01065 | |
Number of page(s) | 9 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601065 | |
Published online | 23 May 2025 |
- A. Mohamed, T. Mohamed, Ni-Based Cr Alloys and Grain Boundaries Characterization. Int. J. Comput. Eng. Res. 3, 69 (2013). https://doi.org/10.1007/s00894-019-4160-y [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10, 48–55 (2020) [Google Scholar]
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016) [Google Scholar]
- K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13, 158–169 (2023) [Google Scholar]
- D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014) [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12, 177–196 (2022) [Google Scholar]
- S. Kumar, R. Kumar, A. Kumar, Challenges and future directions in AI-based smart irrigation systems. J. Agric. Eng. Biotechnol. 15, 45–58 (2022) [Google Scholar]
- K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14, 45–59 (2023) [Google Scholar]
- K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: A review. Sensors 18, 2674 (2018). https://doi.org/10.3390/s18082674 [CrossRef] [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11, 77–96 (2020) [Google Scholar]
- B. Espejo-Garcia, F.J. Lopez-Pellicer, J. Lacasta, R.P. Moreno, F.J. Zarazaga-Soria, End-to-end sequence labeling via deep learning for automatic extraction of agricultural regulations. Comput. Electron. Agric. 162, 106–111 (2019). https://doi.org/10.1016/j.compag.2019.03.027 [CrossRef] [Google Scholar]
- Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8, 214–232 (2023) [Google Scholar]
- D. Sinwar, V.S. Dhaka, M.K. Sharma, G. Rani, AI-based yield prediction and smart irrigation, in Internet of Things and Analytics for Agriculture, Volume 2, 155–180 (2020) [Google Scholar]
- H. Mumtaj Begum, Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A Study. Indian J. Inf. Sources Serv. 12, 52–58 (2022) [Google Scholar]
- Y. Wu, J. Tham, The Impact of Executive Green Incentives and Top Management Team Characteristics on Corporate Value in China: The Mediating Role of Environment, Social and Government Performance. Sustainability 15, 12518 (2023) [CrossRef] [Google Scholar]
- M. Rao, S. Kumar, K. Rao, Effective medical leaf identification using hybridization of GMMCNN. Int. J. Exp. Res. Rev. 32, 115–123 (2023) [CrossRef] [Google Scholar]
- S. David, R.S. Anand, M. Sagayam, Enhancing AI based evaluation for smart cultivation and crop testing using agro-datasets. J. Artif. Intell. Syst. 2, 149–167 (2020) [Google Scholar]
- A. Dessy, D. Ratna, S. Leni, D. Yadi Heryadi, S. Fatma, I. S. I Gede, R. Robbi, Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14, 103–111 (2023) [Google Scholar]
- S. Thanuskodi, Authorship Pattern and Collaborative Measures in Seed Technology Research: A Scientometric Analysis, in Exploring Digital Metrics in Academic Libraries, 1–32 (IGI Global Scientific Publishing, 2025) [Google Scholar]
- T. Robles, R. Alcarria, D.M. De Andrés, M.N. De la Cruz, R. Calero, S. Iglesias, M. Lopez, An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 6, 4–23 (2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.