Open Access
Issue
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
Article Number 02013
Number of page(s) 6
Section Finance Tech Advances: Impacts and Innovations
DOI https://doi.org/10.1051/shsconf/202521802013
Published online 03 July 2025
  1. P. C. Verhoef, The role of relational information processes in customer retention. J. Mark. 67(1), 31–44 (2003) [Google Scholar]
  2. P. Lalwani, M. K. Mishra, J. S. Chadha, P. Sethi, Customer churn prediction system: a machine learning approach. Comput. 104(2), 271–294 (2022) [CrossRef] [Google Scholar]
  3. S. Goyal, Credit card customers: predict churning customers. Kaggle. Available: https://www.kaggle.com/datasets/arjunbhasin2013/credit-card-customers [Google Scholar]
  4. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017) [Google Scholar]
  5. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking generalization. Proc. Int. Conf. Learn. Represent. (ICLR) (2017) [Google Scholar]
  6. N. Hollmann, S. Müller, L. Purucker, Accurate predictions on small data with a tabular foundation model. Nature 637, 319–326 (2025) [CrossRef] [Google Scholar]
  7. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. Wortman Vaughan, A theory of learning from different domains. Mach. Learn. 79(1-2), 151–175 (2010) [Google Scholar]
  8. P. Domingos, A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012) [CrossRef] [Google Scholar]
  9. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), Article No. 115, 1–35 (2021) [Google Scholar]
  10. D. Alvarez Melis, T. Jaakkola, Towards robust interpretability with self-explaining neural networks. Adv. Neural Inf. Process. Syst. 31 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.