Open Access
Issue
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
Article Number 02014
Number of page(s) 8
Section Finance Tech Advances: Impacts and Innovations
DOI https://doi.org/10.1051/shsconf/202521802014
Published online 03 July 2025
  1. R.J.A. Little, D.B. Rubin, Statistical analysis with missing data. John Wiley & Sons (2019) [Google Scholar]
  2. J.L. Schafer, J.W. Graham, Missing data: Our view of the state of the art. Psychol. Methods 7(2), 147–177 (2002) [CrossRef] [Google Scholar]
  3. J.W. Osborne, Best practices in data cleaning: A complete guide to everything you need to do before and after collecting your data. SAGE Publ. (2013) [CrossRef] [Google Scholar]
  4. I.R. White, P. Royston, A.M. Wood, Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 30(4), 377–399 (2011) [CrossRef] [Google Scholar]
  5. M. Kuhn, K. Johnson, Feature engineering and selection: A practical approach for predictive models. Chapman & Hall/CRC (2019) [CrossRef] [Google Scholar]
  6. S. Van Buuren, Flexible imputation of missing data. Chapman & Hall/CRC (2018) [CrossRef] [Google Scholar]
  7. F. Tang, H. Ishwaran, Random forest missing data algorithms. Stat. Anal. Data Min. ASA Data Sci. J. 10(6), 363–377 (2017) [CrossRef] [Google Scholar]
  8. P. Berglund, S. Heeringa, Multiple imputation of missing data using SAS. SAS Inst. (2014) [Google Scholar]
  9. C. Deng, Y. Li, X. Zhou, Impact of missing data on feature selection and classification. Pattern Recognit. Lett. 133, 251–258 (2020) [Google Scholar]
  10. J. Yoon, J. Jordon, M. van der Schaar, Gain: Missing data imputation using generative adversarial nets. In: 35th Int. Conf. Mach. Learn. (ICML), 80, 5689–5698 (2018) [Google Scholar]
  11. A. Nazabal, J. Oliver, Z. Ghahramani, I. Valera, Handling incomplete heterogeneous data using VAEs. Pattern Recognit. 107, 107501 (2020) [CrossRef] [Google Scholar]
  12. D.B. Rubin, Inference and missing data. Biometrika 63(3), 581–592 (1976) [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Bertsimas, C. Pawlowski, Y.D. Zhuo, From predictive methods to missing data imputation: An optimization approach. J. Mach. Learn. Res. 18(1), 7133–7171 (2018) [Google Scholar]
  14. R. Li, Y. Chen, A survey on deep learning approaches for imputation of missing data. IEEE Trans. Knowl. Data Eng. 33(5), 1579–1592 (2021) [Google Scholar]
  15. P.J. García-Laencina, J.L. Sancho-Gómez, A.R. Figueiras-Vidal, Pattern classification with missing data: A review. Neural Comput. Appl. 19, 263–282 (2010) [CrossRef] [Google Scholar]
  16. S. Zhang, J. Zhang, Y. Ma, Missing data imputation: A survey of the latest trends and methods. Knowl. Based Syst. 143, 27–41 (2018) [Google Scholar]
  17. D. Bertsimas, B. van Parys, Data imputation under known and unknown dependence. Oper. Res. 69(2), 469–486 (2021) [Google Scholar]
  18. S.V. Buuren, K. Groothuis-Oudshoorn, MICE: Multivariate imputation by chained equations in R. J. Stat. Softw. 45(3), 1–67 (2011). [Google Scholar]
  19. X. Zhou, Z. Liu, L. Wang, AutoML for missing data imputation: A novel framework and experimental analysis. Expert Syst. Appl. 200, 117143 (2022) [Google Scholar]
  20. W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Markov chain Monte Carlo in practice. Chapman & Hall/CRC (1995) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.