Open Access
Issue
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
Article Number 02015
Number of page(s) 6
Section Finance Tech Advances: Impacts and Innovations
DOI https://doi.org/10.1051/shsconf/202521802015
Published online 03 July 2025
  1. L. Tejada-Vicente, D. Rosado-Oliden, D. Mauricio-Santos, Prediction of telecommunications customer churn based on hybrid machine learning and deep learning algorithms. In: 2024 IEEE XXXI Int. Conf. Electronics, Electrical Eng. Computing (INTERCON), pp. 1-6 (2024) [Google Scholar]
  2. T. Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia. Sci. Temper 14(3), 618–624 (2023) [CrossRef] [Google Scholar]
  3. L. W. Widianti, A. S. B. Karno, W. Hastomo, A. N. Utomo, D. Arif, I. S. K. Wardhana, D. Strydom, Improved banking customer retention prediction based on advanced machine learning models. Indones. J. Inf. Syst. 7(2), 178–193 (2025) [CrossRef] [Google Scholar]
  4. B. M. S. Hasan, A. M. Abdulazeez, A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Mining 2(1), 20–30 (2021) [Google Scholar]
  5. L. Van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008) [Google Scholar]
  6. A. Das, LR. In: Encyclopedia of Quality of Life and Well-Being Research, pp. 3985-3986. Springer Int. Publ. (2024) [Google Scholar]
  7. R. M. Aziz, M. F. Baluch, S. Patel, A. H. Ganie, LGBM: a machine learning approach for Ethereum fraud detection. Int. J. Inf. Technol. 14(7), 3321–3331 (2022) [Google Scholar]
  8. H. He, Y. Bai, E. A. Garcia, S. Li, Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE Int. Joint Conf. Neural Networks (IEEE World Congr. Comput. Intell.), pp. 1322-1328 (2008) [Google Scholar]
  9. S. Hasson, Evaluation and implementation of machine learning models to predict customer churn in the telecommunications sector (2024) [Google Scholar]
  10. R. Nkolele, H. Wang, Explainable machine learning: a manuscript on the customer churn in the telecommunications industry. In: 2021 Ethics Explainability Responsible Data Sci. (EE-RDS), pp. 1–7 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.