Open Access
Issue
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
Article Number 02027
Number of page(s) 8
Section Finance Tech Advances: Impacts and Innovations
DOI https://doi.org/10.1051/shsconf/202521802027
Published online 03 July 2025
  1. M. Uddin, Y. Darabidarabkhani, A. Shah, J. Memon, Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review. Renew. Sustain. Energy Rev. 51, 1553–1563 (2015) [CrossRef] [Google Scholar]
  2. C. J. Wu, B. Acun, R. Raghavendra, K. Hazelwood, Beyond efficiency: Scaling AI sustainably. IEEE Micro (2024) [Google Scholar]
  3. R. Nishant, M. Kennedy, J. Corbett, Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manag. 53, 102104 (2020) [Google Scholar]
  4. G. Lykou, D. Mentzelioti, D. Gritzalis, A new methodology toward effectively assessing data center sustainability. Comput. Secur. 76, 327–340 (2018) [CrossRef] [Google Scholar]
  5. M. Koot, F. Wijnhoven, Usage impact on data center electricity needs: A system dynamic forecasting model. Appl. Energy. 291, 116798 (2021) [CrossRef] [Google Scholar]
  6. K. Hao, Training a single AI model can emit as much carbon as five cars in their lifetimes. MIT Technol. Rev. 75, 103 (2019) [Google Scholar]
  7. H. Rong, H. Zhang, S. Xiao, C. Li, C. Hu, Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 58, 674–691 (2016) [CrossRef] [Google Scholar]
  8. S. Mondal, F. B. Faruk, D. Rajbongshi, M. M. K. Efaz, M. M. Islam, GEECO: Green data centers for energy optimization and carbon footprint reduction. Sustain. 15(21), 15249 (2023) [CrossRef] [Google Scholar]
  9. J. H. Luo, J. Wu, Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recognit. 107, 107461 (2020) [CrossRef] [Google Scholar]
  10. J. Gou, B. Yu, S. J. Maybank, D. Tao, Knowledge distillation: A survey. Int. J. Comput. Vis. 129(6), 1789–1819 (2021) [CrossRef] [Google Scholar]
  11. G. S. Nikolić, B. R. Dimitrijević, T. R. Nikolić, M. K. Stojcev, A survey of three types of processing units: CPU, GPU and TPU. In Proc. 57th Int. Sci. Conf. Inf., Commun. Energy Syst. Technol. (ICEST), 1–6 (2022) [Google Scholar]
  12. N. Lei, E. Masanet, Statistical analysis for predicting location-specific data center PUE and its improvement potential. Energy. 201, 117556 (2020) [CrossRef] [Google Scholar]
  13. R. Kong, H. Zhang, M. Tang, H. Zou, C. Tian, T. Ding, Enhancing data center cooling efficiency and ability: A comprehensive review of direct liquid cooling technologies. Energy. 308, 132846 (2024) [CrossRef] [Google Scholar]
  14. S. Bharany, S. Sharma, O. I. Khalaf, G. M. Abdulsahib, A. S. Al Humaimeedy, T. H. Aldhyani, ... H. Alkahtani, A systematic survey on energy-efficient techniques in sustainable cloud computing. Sustain. 14(10), 6256 (2022) [CrossRef] [Google Scholar]
  15. A. Kadkhodayi, M. Jabeli, H. Aghdam, S. Mirbakhsh, Artificial intelligence-based real-time traffic management. J. Electr. Electron. Eng. 2(4), 368–373 (2023) [Google Scholar]
  16. B. Ameh, Digital tools and AI: Using technology to monitor carbon emissions and waste at each stage of the supply chain, enabling real-time adjustments for sustainability improvements. Int. J. Sci. Res. Arch. 13(1), 2741–2754 (2024) [CrossRef] [Google Scholar]
  17. Y. Meng, H. Noman, Predicting CO₂ emission footprint using AI through machine learning. Atmosphere. 13(11), 1871 (2022) [CrossRef] [Google Scholar]
  18. S. Dewitte, J. P. Cornelis, R. Müller, A. Munteanu, Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sens. 13(16), 3209 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.