Open Access
Issue |
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
|
|
---|---|---|
Article Number | 02028 | |
Number of page(s) | 10 | |
Section | Finance Tech Advances: Impacts and Innovations | |
DOI | https://doi.org/10.1051/shsconf/202521802028 | |
Published online | 03 July 2025 |
- D.Y. Luo, Y.W. Liu, Y.L. Cao, Q.F. Yang, Z.X. Song, X.P. Wang, Active and Passive Fusion: Strategic bond index based on XGBoost algorithm. Fin. Mark. Res., 38 - 48, (2024) [Google Scholar]
- F.W. Jiang, T. Ma, H.W. Zhang, High Risk and Low Return? Dynamic CAPM model interpretation based on machine learning. J. Manag. Sci., 109 - 126, (2021) [Google Scholar]
- Y.C. Chen, W.C. Huang, Constructing a stock - price forecast CNN model with gold and crude oil indicators. Appl. Soft Comput. 112, (2021) [Google Scholar]
- Q. Zhou, C. Zhou, X. Wang, Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection. PLoS ONE, 17(2), e0262501, (2022) [Google Scholar]
- V.K. Vishwakarma, N.P. Bhosale, A survey of recent machine learning techniques for stock prediction methodologies. Neural Comput. Appl. 1951 - 1972, (2025) [Google Scholar]
- J. George, A.M. Nair, S. Yathish, Analysis of Market Behavior Using Popular Digital Design Technical Indicators and Neural Network. in Lect. Notes Netw. Syst. (2022) [Google Scholar]
- T.W.A. Khairi, R.M. Zaki, W.A. Mahmood, Stock Price Prediction using Technical, Fundamental and News based Approach. in SCCS 2019 - 2019 2nd Sci. Conf. Comput. Sci., (2019) [Google Scholar]
- A.Y. Wiiava, C. Fatichah, A. Saikhu, Stock Price Prediction with Golden Cross and Death Cross on Technical Analysis Indicators Using Long Short Term Memory. in ICOIACT 2022 - 5th Int. Conf. Inf. Commun. Technol.: A New Way to Make AI Useful for Everyone in the New Normal Era, Proceeding, (2022) [Google Scholar]
- Q. Liu, H. Son, Methods for aggregating investor sentiment from social media. Hum. Soc. Sci. Commun., 11(1), 925, (2024) [CrossRef] [Google Scholar]
- Q. Liu, H. Son, Data selection and collection for constructing investor sentiment from social media. Hum. Soc. Sci. Commun. 11(1), 786, (2024) [CrossRef] [Google Scholar]
- G.H. Tang, F.W. Jiang, D.S. Zhang, Research Progress on Text Sentiment in Financial Markets. Econ. Trends, 137 - 147, (2016) [Google Scholar]
- M.M. Billah, A. Sultana, F. Bhuiyan, M.G. Kaosar, Stock price prediction: comparison of different moving average techniques using deep learning model. Neural Comput. Appl. 5861 - 5871, (2024) [Google Scholar]
- T. Kabbani, E. Duman, Deep Reinforcement Learning Approach for Trading Automation in the Stock Market. IEEE Access, 10, 93564 - 93574, (2022) [CrossRef] [Google Scholar]
- N. Das, B. Sadhukhan, C. Ghosh, A. Chowdhury, S. Chakrabarti, Utilizing Ensemble Learning and Dimension Reduction in Predicting Stock Prices: A Transparent Methodology with Insights from Explainable AI. SN Comput. Sci., 6(1), 83, (2025) [CrossRef] [Google Scholar]
- F. Zhou, X.D. Chen, T. Zhong, J. Wu, A review of deep learning technologies for Fintech. Comput. Sci. 49(S2), 20 - 36, (2022) [Google Scholar]
- Z. Hu, W. Liu, J. Bian, X. Liu, T.Y. Liu, Listening to chaotic whispers: A deep learning framework for news - oriented Stock trend prediction. in WSDM 2018 - Proc. 11th ACM Int. Conf. Web Search Data Min., (2018) [Google Scholar]
- A. Peivandizadeh, S. Hatami, A. Nakhjavani, L. Khoshsima, M.R. Chalak Qazani, M. Haleem, R. Alizadehsani, Stock Market Prediction With Transductive Long Short - Term Memory and Social Media Sentiment Analysis. IEEE Access, 12, 87110 - 87130, (2024) [CrossRef] [Google Scholar]
- W.L. Liu, Y. Zhang, X.Y. Yang, Online Margin portfolio trading strategy based on LSTM forecast information. Syst. Eng. Theory Pract. 44(08), 2493 - 2511, (2024) [Google Scholar]
- H. Kumar, A. Taluja, P. Kumar, A comprehensive analysis of LSTM techniques for predicting financial market. Int. J. Financ. Eng. 11(04), (2024) [Google Scholar]
- H. Yuan, J. Bi, S. Li, J. Zhang, M. Zhou, An Improved LSTM - Based Prediction Approach for Resources and Workload in Large - Scale Data Centers. IEEE Internet Things J. 11(12), 22816 - 22829, (2024) [CrossRef] [Google Scholar]
- A.A.A. Alshawi, J. Tanha, M.A. Balafar, An Attention - Based Convolutional Recurrent Neural Networks for Scene Text Recognition. IEEE Access, 12, 8123 - 8134, (2024) [CrossRef] [Google Scholar]
- G. Yenduri, M. Ramalingam, G.C. Selvi, Y. Supriya, G. Srivastava, P.K.R. Maddikunta, G.D. Raj, R.H. Jhaveri, B. Prabadevi, W. Wang, A.V. Vasilakos, T.R. Gadekallu, GPT (Generative Pre - Trained Transformer)— A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. IEEE Access, 12, 54608 - 54649, (2024) [CrossRef] [Google Scholar]
- H. Bashiri, H. Naderi, Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowl. Inf. Syst., 66(12), 7305 - 7361, (2024) [CrossRef] [Google Scholar]
- G. Bharathi Mohan, R. Prasanna Kumar, P. Vishal Krishh, A. Keerthinathan, G. Lavanya, Meka Kavya Uma Meghana, Sheba Sulthana, Srinath Doss, An analysis of large language models: their impact and potential applications. Knowl. Inf. Syst., 66(9), 5047 - 5070, (2024) [CrossRef] [Google Scholar]
- S.J. Wu, O. Irsoy, S. Lu, BloombergGPT: A Large Language Model for Finance. Comput. Sci. - Mach. Learn. (2023) [Google Scholar]
- H.Y. Yang, X.Y. Liu, C. Dan, FinGPT: Open - Source Financial Large Language Models. Quant. Financ. (2023) [Google Scholar]
- H. Wang, V.S. Rajakumar, M. Golec, S.S. Gill, S. Uhlig, StockAICloud: AI - based sustainable and scalable stock price prediction framework using serverless cloud computing. J. Supercomput., 81(4), 527, (2025) [CrossRef] [Google Scholar]
- Y. Fang, Y.Z. Chen, J. Wei, Artificial Intelligence and Chinese Stock Market: Portfolio Quantification based on Machine Learning Prediction. Ind. Technol. Econ., 41(08), 83 - 91, (2022) [Google Scholar]
- F.W. Jiang, Y.M. Liu, L.C. Meng, Big Language Model, Text Sentiment and Financial Market. Manag. World, 40(08), 42 - 64, (2024) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.