Open Access
SHS Web Conf.
Volume 39, 2017
Innovative Economic Symposium 2017 (IES2017)
Article Number 01018
Number of page(s) 10
Section Strategic Partnerships in International Trade
Published online 06 December 2017
  1. M. A. Allen, M. Digiuseppe, Tightening the Belt: Sovereign Debt and Alliance Formation. International Studies Quarterly, 57(4), 647–659, (2013) [CrossRef] [Google Scholar]
  2. F. Fastenrath, M. Schwan, Ch. Trampusch, Where states and markets meet: the financialisation of sovereign debt management. New Political Economy, 22(3), 273–293 (2016) [CrossRef] [Google Scholar]
  3. C. Bowdler, R. P. Esteves, Sovereign debt: the assessment. Oxford Review of Economic Policy, 29(3), 463–477 (2013) [CrossRef] [Google Scholar]
  4. L. Agnello, V. Castro, J. T. Jalles, R. M. Sousa, Financial stress and sovereign debt composition. Applied Economics Letters, 23(9), 678–683 (2015) [CrossRef] [Google Scholar]
  5. M. Caner, T. Grennes, F. Koehler-Geib, Finding the tipping point: When sovereign debt turns bad. Sovereign Debt and the Financial Crisis: Will this Time be Different, 63–75 (2011) [Google Scholar]
  6. J. Xu, X. Zhang, China’s sovereign debt: A balance-sheet perspective. China Economic Review, 31, 55–73 (2014) [CrossRef] [Google Scholar]
  7. P. Rousek, M. Vochozka, Public production of private and public goods in the Czech Republic in 2013. Proceedings of the 7th International conference Economic Challenges in Enlarged Europe, 1–9, (2015) [Google Scholar]
  8. M. Ehrmann, M. Fratzscher, Euro area government bonds – Fragmentation and contagion during the sovereign debt crisis. Journal of International Money and Finance, 70, 26–44 (2017) [CrossRef] [Google Scholar]
  9. V. Bartoseviciene, S. Janusauskaite, S. Motuziene, Prognostication of the gross domestic product. Proceedings of the 2nd International Scientific Conference on Globalisation and Integration Challenges to Rural Development in Eastern and Central Europe, Kaunas City, Lithuania, 211–213, (2005) [Google Scholar]
  10. J. Vrbka, Predicting Future GDP Development by Means of Artificial Intelligence. Littera Scripta, 9(3), 154–167 (2016) [Google Scholar]
  11. B. He, Consideration of risk in the measurement of gross domestic product and its influence on behavioral change. 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, IEEE, 268–271 (2009) [CrossRef] [Google Scholar]
  12. X. Xu, China’s gross domestic product estimation. China Economic Review, 15(3), 302–322 (2004) [CrossRef] [Google Scholar]
  13. I. Steblianko, Gross domestic product in the categories of production, income and end use. Economic Annals-ХХI, 160(7-8), 35–38 (2016) [Google Scholar]
  14. K. Vltavska, J. Sixta, M. Simkova, J. Zeman, Historical time series of GDP employing standard esa 2010. Proceedings of the 9th International Days of Statistics and Economics, Prague, Czech Republic, 1675–1682 (2015) [Google Scholar]
  15. T. Proietti, M. Marczak, G. Mazzi, Euromind- D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area. Journal of Applied Econometrics, 32(3), 683–703 (2017) [CrossRef] [Google Scholar]
  16. D. M. Rees, D. Lancaster, R. Finlay, A State-Space Approach to Australian Gross Domestic Product Measurement. Australian Economic Review, 48(2), 133–149 (2015) [CrossRef] [Google Scholar]
  17. B. Yang, C. Li, M. Li, K. Pan A. D. Wang, Application of ARIMA model in the prediction of the gross domestic product. Proceedings of the 6th International Conference on Mechatronics, Computer and Education Informationization, Shenyang, China, 130, 1258–1262 (2016) [Google Scholar]
  18. The World Bank, The World Bank - USA [online], Available from: (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.