Open Access
SHS Web Conf.
Volume 58, 2018
GLOBMAR 2018 - Global Maritime Conference
Article Number 01009
Number of page(s) 12
Published online 03 December 2018
  1. R. A. Daziano, D. Bolduc, Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transportmetrica A: Transp. Sc., 9, 74-106 (2013) [CrossRef] [Google Scholar]
  2. W. Y. Szeto, Guest Editorial: Special Issue on Quantitative Approaches to Environmental Sustainability in Transportation Networks. Netw. and Spat. Econ., 16, 1-8 (2016) [CrossRef] [Google Scholar]
  3. W.Y. Szeto, Y. Jiang, D.Z.W. Wang, A. Sumalee, A sustainable road network design problem with land use transportation interaction over time. Netw. and Spat. Econ., 15, 791-822 (2015) [CrossRef] [Google Scholar]
  4. S. Cheon, E. Deakin, Supply chain coordination for port sustainability: lessons for new institutional designs. Transp. Res. Rec.: J. of the Transp. Res. Board, 2166, 10-19 (2010) [CrossRef] [Google Scholar]
  5. N. S. Kim, B. Van Wee, The relative importance of factors that influence the break-even distance of intermodal freight transport systems. J. of Transp. Geogr., 19, 859-875 (2011) [CrossRef] [Google Scholar]
  6. C.-C. Chang, C.-M. Wang, Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transp. Res. Part D: Transport and Environment, 17, 185-189 (2012) [CrossRef] [Google Scholar]
  7. J.-B. Sheu, T.-L. Hu, S.-R. Lin, The key factors of green port in sustainable development. Pakist. J. of Stat., 29, pp. 755-767 (2013) [Google Scholar]
  8. S. Wang, T. Notteboom, The role of port authorities in the development of LNG bunkering facilities in North European ports. WMU J. of Marit. Aff., 14, 61-92 (2015) [CrossRef] [Google Scholar]
  9. B. Wiegmans, R. Konings, Intermodal Inland Waterway Transport: Modelling Conditions Influencing Its Cost Competitiveness. The Asian J. of Shipp. and Log., 31, 273-294 (2015) [Google Scholar]
  10. M. Hann, L. Piotrowski, K. Woś, A new concept for utilising the Oder waterway in intermodal container transport. Sc. J. of Marit. Univ. in Szczecin, 47, 129-135 (2016) [Google Scholar]
  11. Ministry of Maritime Economy and Inland Navigation (2016) [Google Scholar]
  12. R. Rolbiecki, Badania popytu na przewozy ładunków transportem wodnym śródlądowym. Zeszyty Naukowe Uniwersytetu Gdańskiego. Ekonomika Transportu i Logistyka, 43, 41-50 (2012) [Google Scholar]
  13. G. De Jong, A. Daly, M. Pieters, C. Vellay, M. Bradley, F. Hofman, A model for time of day and mode choice using error components logit. Transp. Res. Part E: Log. and Transp. Rev., 39, 245-268 (2003) [CrossRef] [Google Scholar]
  14. M. Börjesson, Joint RP-SP data in a mixed logit analysis of trip timing decisions. Transp. Res. Part E: Logistics and Transportation Review, 44, 1025-1038 (2008) [CrossRef] [Google Scholar]
  15. J. Willigers, M. de Bok, Updating and extending the disaggregate choice models in the Dutch National Model. Paper Presented at the 2009 European Transport Conference, Noordwijkerhout (2009) [Google Scholar]
  16. P.R. Koster, The cost of travel time variability for air and car travellers. Doctoral Theses - Economics and Business Administration (2012) [Google Scholar]
  17. M. Gelhausen, P. Berster, D. Wilken, A new model of long term forecasting air passenger demand and the number of air transport movements of Germany. 2016 Atrs World Conference (2016) [Google Scholar]
  18. X. Feng, M. Saito, Y. Liu, Improve urban passenger transport management by rationally forecasting traffic congestion probability. Int. J. of Prod. Res., 54, 3465-3474 (2016) [CrossRef] [Google Scholar]
  19. R. Żochowska, G. Karoń, R. Janecki, A. Sobota, Selected Aspects of the Methodology of Traffic Flows Surveys and Measurements on an Urban Agglomeration Scale with Regard to ITS Projects. In: Macioszek E., Sierpiński G. (eds) Recent Advances in Traffic Engineering for Transport Networks and Systems. TSTP 2017. Lecture Notes in Networks and Systems, Springer, 21, pp. 37-49 (2017) [CrossRef] [Google Scholar]
  20. W. Abdelwahab, M. Sargious, Modelling the demand for freight transport: a new approach. J. of Transp. Econ. and Pol., 26, 49-70 (1992) [Google Scholar]
  21. G. De Jong, H. Gunn, W. Walker, National and international freight transport models: an overview and ideas for future development. Transp. Rev., 24, 103-124 (2004) [CrossRef] [Google Scholar]
  22. G. De Jong, M. Kouwenhoven, K. Ruijs, P van Houwe, D. Borremans, A time-period choice model for road freight transport in Flanders based on stated preference data. Transp. Res. Part E: Log. and Transp. Rev., 86, 20-31 (2016) [CrossRef] [Google Scholar]
  23. A. Valdas, R. Ruus, R. Põldaru, J. Roots, Forecasting road freight transport alternatives for sustainable regional development in Estonia. Economic Science for Rural Development Conference Proceedings, 42, 171-178 (2016) [Google Scholar]
  24. M. Postan, L. Filina-Dawidowicz, Dynamic Optimization Model for Planning of Supply, Production, and Transportation of Perishable Product. In: Suchanek M. (eds) Sustainable Transport Development, Innovation and Technology. TranSopot 2016. Springer Proceedings in Business and Economics, Springer, 235-244 (2016) [Google Scholar]
  25. C. W. Howe, J. L. Carroll, A. P. HurterJr, W.J. Leininger, S. G. Ramsey, N.L. Schwartz, E. Silberberg, R. M. Steinberg, Inland waterway transportation: studies in public and private management and investment decisions (Routledge 2016) [CrossRef] [Google Scholar]
  26. B. H. Archer, Forecasting demand: quantitative and intuitive techniques. Int. J. of Tour. Manag., 1, 5-12 (1980) [CrossRef] [Google Scholar]
  27. E. I. Vlahogianni, J. C. Golias, M. G. Karlaftis, Short-term traffic forecasting: Overview of objectives and methods. Transp. Rev., 24, 533-557 (2004) [CrossRef] [Google Scholar]
  28. J. Liu, W. Guan, A summary of traffic flow forecasting methods. J. of High. and Transp. Res. and Dev., 3, 82-85 (2004) [Google Scholar]
  29. B. Atasoy, A. Glerum, R. Hurtubia, M. Bierlaire, Demand for public transport services: Integrating qualitative and quantitative methods. 10th Swiss Transport Research Conference (2010) [Google Scholar]
  30. M. Patriksson, The traffic assignment problem: models and methods. Courier Dover Publications (2015) [Google Scholar]
  31. D. A. Hensher & K. J. Button (Eds.), Handbook of transport modeling (Emerald Group Publishing Limited 2007) [Google Scholar]
  32. J. D. D. Ortuzar, L. G. Willumsen, Modelling transport. John Wiey & Sons Ltd., New Delhi (2011) [CrossRef] [Google Scholar]
  33. M. Wegener, Overview of land use transport models. Handbook of transport geography and spatial systems, 127-146 (Emerald Group Publishing Limited 2004) [Google Scholar]
  34. S. P. Washington, M. G. Karlaftis, F. Mannering, Statistical and econometric methods for transportation data analysis (CRC press 2010) [Google Scholar]
  35. R. Chrobok, O. Kaumann, J. Wahle, M. Schreckenberg, Different methods of traffic forecast based on real data. Eur. J. of Oper. Res., 155, 558-568 (2004) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.