Open Access
Issue
SHS Web Conf.
Volume 74, 2020
The 19th International Scientific Conference Globalization and its Socio-Economic Consequences 2019 – Sustainability in the Global-Knowledge Economy
Article Number 05024
Number of page(s) 8
Section Regions and Economic Resilience
DOI https://doi.org/10.1051/shsconf/20207405024
Published online 10 January 2020
  1. M. Durica, I. Podhorska, P. Durana, Business failure prediction using cart-based model: A case of Slovak companies. Ekonomicko-manazerske spektrum 13, 1, 51-61 (2019) [CrossRef] [Google Scholar]
  2. J. Salaga, V. Bartosova, E. Kicova, Economic value added as a measurement tool of financial performance. Procedia Economics and Finance 26, 484-489 (2015) [CrossRef] [Google Scholar]
  3. K. Valaskova, K. Kramarova, B. Kollar, Theoretical aspects of a model of credit risk determinationCredit risk. Advances in Education Research 81, 401-406 (2015) [Google Scholar]
  4. Svabova, Durica, 2016 [Google Scholar]
  5. N. Shpak, O. Sorochak, M. Hvozd, W. Sroka, Risk evaluation of the reengineering projects: A Case Study Analysis. Scientific Annals of Economics and Business 65, 2, 215-226 (2018) [CrossRef] [Google Scholar]
  6. P. Adamko, E. Spuchlakova, K. Valaskova, The history and ideas behind VaR. Procedia Economics and Finance 24, 18-24 (2015) [Google Scholar]
  7. J. Oláh, G. Karmazin, D. Máté, J.K. Grabara, J. Popp, The effect of acquisition moves on income, pre-tax profits and future strategy of logistics firms. Journal of International Studies 10, 4, 233-245 (2017) [CrossRef] [Google Scholar]
  8. M. Dobrodolac, L. Svadlenka, M. Cubranic-Dobrodolac, S. Cicevic, B. Stanivukovic, A model for the comparison of business units. Personnel Review 47, 1, 150-165 (2018) [Google Scholar]
  9. M. Kovacova, T. Kliestik, Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium 12, 4, 2017. [CrossRef] [Google Scholar]
  10. B. Gavurova, F. Janke, M. Packova, M. Pridavok, Analysis of impact of using the trend variables on bankruptcy prediction models performance. Ekonomicky casopis 65, 4, 2017. [Google Scholar]
  11. M. Mihalovic, Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology 9, 4, 2016. [CrossRef] [Google Scholar]
  12. P. Adamko, L. Svabova, Prediction of the risk of bankruptcy of Slovak companies. In M. Culik (Ed.). Proceedings of the 8th International scientific conference managing and modelling of financial risks. Ostrava, Czech Republic, 2016. [Google Scholar]
  13. K. Valaskova, L. Svabova, M. Durica, Verifikácia predikčných modelov v podmienkach Slovenského poľnohospodárskeho sektora. Economics, Management, Innovation 9, 3, 30-38, 2017. [Google Scholar]
  14. C.F. Tsai, K.C. Cheng, Simple instance selection for bankruptcy prediction. Knowledge-based Systems 27, 2012. [Google Scholar]
  15. S. Linares-Mustaros, G. Coenders, M. Vives-Mestres, Financial performance and distress profiles. From classification according to financial ratios to compositional classification. Advances in Accounting 40, 2018. [CrossRef] [Google Scholar]
  16. M.J. Alrawashdeh, T.R. Radwan, K.A. Abunawas, Performance of linear discriminant analysis using different robust methods. European Journal of Pure and Applied Mathematics 11, 1, 2018. [CrossRef] [Google Scholar]
  17. S. Figini, F. Bonelli, E. Giovannini, Solvency prediction for small and medium enterprises in banking. Decision Support Systems 102, 2017. [CrossRef] [Google Scholar]
  18. B. Pawelek, K. Galuszka, J. Kostrzewska, M. Kostrzewski, Classification methods in the research on the financial standing of construction enterprises after bankruptcy in Poland. In F. Palumbo, A. Montanari, M. Vichi (Eds.). Data science: Innovative developments in data analysis and clustering. Springer International Pulishing, 2015. [Google Scholar]
  19. J. Kostrzewska, M. Kostrzewski, B. Pawelek, K. Galuszka, The classical and Bayesian logistic regression in the research on the financial standing of enterprises after bankruptcy in Poland. In M. Papiez & S. Smiech (Eds.). Proceedings of 10th professor Aleksander Zelias international conference on modelling and forecasting of socio-economic phenomena. Cracow: Foundation of the Cracow University of Economics, 2016. [Google Scholar]
  20. B. Pawelek, J. Kostrzewska, A. Lipieta, The problem of outliers in the research on the financial standing of construction enterprises in Poland. In M. Papiez & S. Smiech (Eds.). Proceedings of 9th professor Aleksander Zelias international conference on modelling and forecasting of socio-economic phenomena. Cracow: Foundation of the Cracow University of Economics, 2015. [Google Scholar]
  21. B.G. Tabachnick, L.S. Fidell, Using multivariate statistics. Boston, USA: Pearson Education, 2013. [Google Scholar]
  22. L. Svabova, M. Durica, I. Podhorska, Prediction of Default of Small Companies in the Slovak Republic. Economics and Culture 15, 1, 88-95, 2018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.