Open Access
SHS Web Conf.
Volume 77, 2020
The 2nd ACM Chapter International Conference on Educational Technology, Language and Technical Communication (ETLTC2020)
Article Number 01001
Number of page(s) 18
Section Educational Technology
Published online 08 May 2020
  1. M. Garey, D.S. Johnson, Computer and Intractability (W.H. Freeman and Company, New York, 1979) [Google Scholar]
  2. A.A. Gozali, J. Tirtawangsa, T.A. Basuki, Asynchronous Island Model Genetic Algorithm for University Course Timetabling, in Proceedings of the 10th International Conference on the Practice and Theory of Automated Timetabling (PATAT, 2014), pp. 179–187, ISBN 978-0-9929984-0-0 [Google Scholar]
  3. K. Murray, T. Muller, H. Rudova, in Practice and Theory of Automated Timetabling VI, edited by E.K. Burke, H. Rudová (Springer Berlin Heidelberg, 2006), Number 3867 in Lecture Notes in Computer Science, pp. 189–209, ISBN 978-3-540-77344-3 978-3-540-77345-0, dOI: 10.1007/978-3-540-77345-0_13, [Google Scholar]
  4. M.W. Carter, A Comprehensive Course Timetabling and Student Scheduling System at the University of Waterloo, in Practice and Theory of Automated Timetabling III: Third International Conference, PATAT 2000 Konstanz, Germany, August 16–18, 2000 Selected Papers, edited by E. Burke, W. Erben (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001), pp. 64–82, ISBN 978-3-540-44629-3, [CrossRef] [Google Scholar]
  5. T. Muller, K. Murray, Annals of Operations Research 181, 249 (2010) [CrossRef] [Google Scholar]
  6. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. (Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989), ISBN 0201157675 [Google Scholar]
  7. J. Abela, A Parallel Genetic Algorithm for Solving the School Timetabling Problem, in Division of Information Technology, CSIRO (Citeseer, 1991) [Google Scholar]
  8. K. Banczyk, T. Boinski, H. Krawczyk, Parallelisation of Genetic Algorithms for Solving University Timetabling Problems, in International Symposium on Parallel Computing in Electrical Engineering (PARELEC’06) (2006), pp. 325–330 [CrossRef] [Google Scholar]
  9. D. Corne, P. Ross, H.L. Fang, Fast practical evolutionary timetabling, in AISB Workshop on Evolutionary Computing (Springer, 1994), pp. 250–263 [Google Scholar]
  10. Suyanto, Artificial Intelligence Soft Computing Lecture Notes of Computer Science, Springer Berlin Heidelberg 6114, 229 (2010) [Google Scholar]
  11. F. Titel, K. Belarbi, International Journal of Electrical and Computer Engineering 7, 2614 2626 (2017) [Google Scholar]
  12. T. Muller, University Course Timetabling: Solver Evolution, in Proceedings of the 11th international conference on the Practice And Theory of Automated Timetabling, 2016 (2016) [Google Scholar]
  13. L.D. Gaspero, B.M. Mccollum, A.S. Schaerf, The Second International Timetabling Competition (ITC-2007): Curriculum-based Course Timetabling (Track 3), in Proceedings of the 1st International Workshop on Scheduling a Scheduling Competition (SSC 2007) (2007) [Google Scholar]
  14. G. Lu, S. Areibi, An Island-Based GA Implementation for VLSI Standard-Cell Placement, in Genetic and Evolutionary Computation – GECCO 2004: Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II, edited by K. Deb (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004), pp. 1138–1150, ISBN 978-3-540-24855-2, [Google Scholar]
  15. M. Atsuta, K. Nonobe, T. Ibaraki, ITC2007 Track 2: An Approach using general CSP solver, in Proceedings of the Practice and Theory of Automated Timetabling (PATAT 2008) (2008) [Google Scholar]
  16. M.J. Geiger, Annals of Operations Research 194, 189 (2010) [CrossRef] [Google Scholar]
  17. M. Clark, M. Henz, B. Love, QuikFix A Repair-based Timetable Solver, in Proceedings of the Practice and Theory of Automated Timetabling (PATAT 2008) (2008) [Google Scholar]
  18. Z. Lü, J.K. Hao, European Journal of Operational Research 200, 235 (2010) [CrossRef] [Google Scholar]
  19. S. Abdullah, H. Turabieh, B. McCollum, P. McMullan, Journal of Heuristics 18, 1 (2010) [CrossRef] [Google Scholar]
  20. B. McCollum, P. McMullan, A.J. Parkes, E. Burke, S. Abdullah, An Extended Great Deluge Approach to the Examination Timetabling Problem, in Proceeding of the Multidisciplinary International Scheduling Conference (MISTA) 2009 (2009) [Google Scholar]
  21. J.A. Soria-Alcaraz, E. Özcan, J. Swan, G. Kendall, J.M.C. Valadez, Appl. Soft Comput. 40, 581 (2016) [CrossRef] [Google Scholar]
  22. S.N. Jat, S. Yang, Journal of Scheduling 14, 617 (2010) [CrossRef] [Google Scholar]
  23. H. Cambazard, E. Hebrard, B. O’Sullivan, A. Papadopoulos, Annals of Operations Research 194, 111 (2010) [CrossRef] [Google Scholar]
  24. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A.J. Parkes, L.D. Gaspero, R. Qu, E.K. Burke, INFORMS Journal on Computing 22, 120 (2010) [CrossRef] [Google Scholar]
  25. C. Nothegger, A. Mayer, A. Chwatal, G.R. Raidl, Annals of Operations Research 194, 325 (2012) [CrossRef] [Google Scholar]
  26. H. Babaei, J. Karimpour, A. Hadidi, Computers & Industrial Engineering 86, 43 (2015) [CrossRef] [Google Scholar]
  27. A.A. Gozali, S. Fujimura, Evolutionary Intelligence (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.