Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 01011
Number of page(s) 9
Section Technology Assisted Language Learning
DOI https://doi.org/10.1051/shsconf/202110201011
Published online 03 May 2021
  1. J.T. Chowning, Science teacher (Normal, Ill.) 76, 36 (2009) [Google Scholar]
  2. M. Swan, The Practice of English Language Teaching (Oxford University Press, Oxford, 2018) [Google Scholar]
  3. T. Morell, English for specific purposes 23, 325 (2004) [Google Scholar]
  4. B. Aarts, S. Wallis, I. Cushing, Englicious: English language resources for schools (2020), http://www.englicious.org/ [Google Scholar]
  5. S. Greenbaum, English Today 7, 3 (1991) [Google Scholar]
  6. D. Biber, S. Johansson, G. Leech, S. Conrad, E. Finegan, Longman grammar of spoken and written English. (Longman, London, 1999) [Google Scholar]
  7. R. Carter, M. McCarthy, Cambridge grammar of English: a comprehensive guide; spoken and written English grammar and usage (Cambridge University Press, Cambridge, 2006) [Google Scholar]
  8. R. Quirk, S. Greenbaum, A university grammar of English (Longman, 1993) [Google Scholar]
  9. J. Blake, in New Technological Applications for Foreign and Second Language Learning and Teaching, edited by M. Kruk, M. Peterson (IGI Global, 2020), pp. 1–23 [Google Scholar]
  10. N. Afzal, R. Mitkov, Soft Computing 18, 1269 (2014) [Google Scholar]
  11. R. Ai, S. Krause, W. Kasper, F. Xu, H. Uszkoreit, Semi-automatic generation of multiple-choice tests from mentions of semantic relations, in Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications (2015), pp. 26–33 [Google Scholar]
  12. C.Y. Chen, H.C. Liou, J.S. Chang, FAST–An Automatic Generation System for Grammar Tests, in Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions (2006), pp. 1–4 [Google Scholar]
  13. M. Heilman, Ph.D. thesis, Carnegie Mellon University (2011) [Google Scholar]
  14. N. Duan, D. Tang, P. Chen, M. Zhou, Question generation for question answering, in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017), pp. 866–874 [Google Scholar]
  15. A.R. Fabbri, P. Ng, Z. Wang, R. Nallapati, B. Xiang, arXiv preprint arXiv:2004.11892 (2020) [Google Scholar]
  16. X. Yao, G. Bouma, Y. Zhang, Dialogue & Discourse 3, 11 (2012) [Google Scholar]
  17. N. Kitaev, D. Klein, Constituency Parsing with a Self-Attentive Encoder, in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2018), pp. 2676–2686 [Google Scholar]
  18. J. Zhou, H. Zhao, Head-Driven Phrase Structure Grammar Parsing on Penn Treebank, in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019), pp. 2396–2408 [Google Scholar]
  19. K. Mrini, F. Dernoncourt, Q.H. Tran, T. Bui, W. Chang, N. Nakashole, Rethinking self-attention: Towards interpretability in neural parsing, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings (2020), pp. 731–742 [Google Scholar]
  20. D. Klein, C.D. Manning, Fast exact inference with a factored model for natural language parsing, in Proceedings of the 15th International Conference on Neural Information Processing Systems (2002), pp. 3–10 [Google Scholar]
  21. N. Chomsky, Aspects of the Theory of Syntax, Vol. 11 (MIT Press, 2014) [Google Scholar]
  22. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural Architectures for Named Entity Recognition, in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2016), pp. 260–270 [Google Scholar]
  23. C. Cortes, V. Vapnik, Machine learning 20, 273 (1995) [Google Scholar]
  24. V. Vapnik, The nature of statistical learning theory (Springer science & business media, 2013) [Google Scholar]
  25. T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in Advances in neural information processing systems (2013), pp. 3111–3119 [Google Scholar]
  26. J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (2014), pp. 1532–1543 [Google Scholar]
  27. T. Bolukbasi, K.W. Chang, J.Y. Zou, V. Saligrama, A.T. Kalai, Advances in Neural Information Processing Systems (2016) [Google Scholar]
  28. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (2019), pp. 4171–4186 [Google Scholar]
  29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Advances in neural information processing systems 30, 5998 (2017) [Google Scholar]
  30. P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100,000+ Questions for Machine Comprehension of Text, in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (2016), pp. 2383–2392 [Google Scholar]
  31. S. Reddy, D. Chen, C.D. Manning, Transactions of the Association for Computational Linguistics 7, 249 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.