Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 02001
Number of page(s) 6
Section Technical Communication
DOI https://doi.org/10.1051/shsconf/202110202001
Published online 03 May 2021
  1. W. Ziegler, Drivers of Digital Information Services: Intelligent Information Architecture in Technical Communication, in ACM Chapter Proceedings on Educational Technology, Language & Technical Communication, ACM 2019, pp. 51-52 (2019) [Google Scholar]
  2. A. Patrizio, J. Maguire, Top 100 Artificial Intelligence Companies 2020, https://www.datamation.com/artificial-intelligence/top-100-artificial-intelligence-companies-2020/ (2020) [Google Scholar]
  3. E. Burns, IBM Watson Supercomputer, https://searchenterpriseai.techtarget.com/definition/IBM-Watson-supercomputer (2020) [Google Scholar]
  4. A. Stevens, Wikipedia Factoid Bot: Extract Answers from DBpedia Using SPARQL, https://medium.com/ibm-watson/wikipedia-factoid-bot-5-of-6-extract-answers-from-dbpedia-using-sparql-eab1b268bfa (2017) [Google Scholar]
  5. IBM Cloud, Watson Knowledge Studio Documentation, https://cloud.ibm.com/docs/watson-knowledge-studio (2020) [Google Scholar]
  6. C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, in European conference on information retrieval, Berlin, Heidelberg, pp. 345-359 (2015) [Google Scholar]
  7. T.M. Georgescu, B. Iancu, M. Zurini, Named-entityrecognition-based automated system for diagnosing cybersecurity situations in IoT networks, in Sensors, 15, 3380 (2019) [Google Scholar]
  8. IBM Cloud, API Docs: Natural Language Understanding https://cloud.ibm.com/apidocs/natural-language-understanding (2020) [Google Scholar]
  9. C. Larsonneur, Neural Machine Translation: From Commodity to Commons, in When Translation Goes Digital, Palgrave Macmillan, Cham, pp. 257-280 (2020) [Google Scholar]
  10. U. Reuther, P. Schmidt, Schon nahe dran, in technische kommunikation, 06/18, pp. 18-25 (2018) [Google Scholar]
  11. S. Mahapatra, Why Deep Learning over Traditional Machine Learning, https://towardsdatascience.com/why-deep-learning-is-neededover-traditional-machine-learning-1b6a99177063 (2018) [Google Scholar]
  12. W. Ziegler, Semantic Correlation Rules as a Logic Layer between Content Management and Content Delivery, Proceedings of the ETLTC2021 ACM Chapter International Conference on Educational Technology, Language & Technical Communication. Aizuwakamatsu, Japan. (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.