Open Access
Issue
SHS Web Conf.
Volume 124, 2021
International Conference on Management, Social Sciences & Humanities (ICMeSH 2020)
Article Number 04006
Number of page(s) 12
Section Part 2 - Business and Economy for Sustainable Future
DOI https://doi.org/10.1051/shsconf/202112404006
Published online 15 November 2021
  1. Baek, K., Holton, A., Harp, D., & Yaschur, C. (2011). The links that bind: Uncovering novel motivations for linking on Facebook. Computers in Human Behavior, 27(6), 2243–2248. [CrossRef] [Google Scholar]
  2. Bauwens, R., Muylaert, J., Clarysse, E., Audenaert, M., & Decramer, A. (2020). Teachers’ acceptance and use of digital learning environments after hours: Implications for work-life balance and the role of integration preference. Computers in Human Behavior, 772(January), 106479. [CrossRef] [Google Scholar]
  3. Becker, W.J., Belkin, L.Y., Conroy, S.A., & Tuskey, S. (2019). Killing me softly: Organizational e-mail monitoring expectations’ impact on employee and significant other well-being. Journal of Management, December, 1–29. [Google Scholar]
  4. Belkin, L.Y., Becker, W.J., & Conroy, S.A. (2020). The invisible leash: The impact of organizational expectations for email monitoring after-hours on employee resources, wellbeing, and turnover intentions. Group and Organization Management, 0(0), 1–32. [Google Scholar]
  5. Boichenko, O., & Tymchenko, N. (2020). How to Reduce the Pandemic Impact on Employees: A Guide for Company Leaders. [Google Scholar]
  6. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd Eds. Hillsdale, NJ: Erlbaum. [Google Scholar]
  7. Demerouti, E., Bakker, A.B., Nachreiner, F., & Schaufeli, W.B. (2001). The Job Demands-Resources model of burnout. Journal of Applied Psychology, 86(3), 499–512. [CrossRef] [Google Scholar]
  8. Dhir, A., Yossatorn, Y., Kaur, P., & Chen, S. (2018). Online social media fatigue and psychological wellbeing - A study of compulsive use, fear of missing out, fatigue, anxiety and depression. International Journal of Information Management, 40(February), 141–152. [CrossRef] [Google Scholar]
  9. Diamantopoulos, A., & Siguaw, J.A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management, 17(4), 263–282. [CrossRef] [Google Scholar]
  10. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. [CrossRef] [Google Scholar]
  11. Gadeyne, N., Verbruggen, M., Delanoeije, J., & De Cooman, R. (2018). All wired, all tired? Work-related ICT-use outside work hours and work-to-home conflict: The role of integration preference, integration norms and work demands. Journal of Vocational Behavior, 107(March), 86–99. [CrossRef] [Google Scholar]
  12. Garfin, D.R. (2020). Technology as a coping tool during the coronavirus disease 2019 (COVID-19) pandemic: Implications and recommendations. Stress and Health, 36(4), 555–559. [CrossRef] [Google Scholar]
  13. Ha, Y.W., Kim, J., Libaque-Saenz, C.F., Chang, Y., & Park, M.C. (2015). Use and gratifications of mobile SNSs: Facebook and KakaoTalk in Korea. Telematics and Informatics, 32(3), 425–438. [CrossRef] [Google Scholar]
  14. Haar, J., & Brougham, D. (2020). Work antecedents and consequences of work-life balance: A two sample study within New Zealand. International Journal of Human Resource Management, 0(0), 1–24. [CrossRef] [Google Scholar]
  15. Hafermalz, E. (2020). Out of the Panopticon and into Exile: Visibility and control in distributed new culture organizations. Organization Studies, 0(0), 1–21. [Google Scholar]
  16. Hair, J.F., Risher, J.J., Sarstedt, M., & Ringle, C.M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. [CrossRef] [Google Scholar]
  17. Hayes, A.F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420. [CrossRef] [Google Scholar]
  18. Henseler, J., Ringle, C.M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in Variance-based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43, 115–135. [CrossRef] [Google Scholar]
  19. Huang, L.V., & Liu, P.L. (2017). Ties that work: Investigating the relationships among coworker connections, work-related Facebook utility, online social capital, and employee outcomes. Computers in Human Behavior, 72, 512–524. [CrossRef] [Google Scholar]
  20. Jha, N., Sareen, P., & Potnuru, R.K.G. (2019). Employee engagement for millennials: considering technology as an enabler. Development and Learning in Organizations, 33(1), 9–11. [Google Scholar]
  21. Katz, E., Haas, H., & Gurevitch, M. (1973). On the use of the mass media for important things. American Sociological Review, 38(2), 164–181. [CrossRef] [Google Scholar]
  22. Kline, R.B. 2011. Principles and Practice of Structural Equation Modeling. 3rd ed. Guilford publications. [Google Scholar]
  23. Leatherdale, S.T. (2019). Natural experiment methodology for research: A review of how different methods can support real-world research. International Journal of Social Research Methodology, 22(1), 19–35. [CrossRef] [Google Scholar]
  24. Lee, J., Lee, M., & Choi, I.H. (2012). Social network games uncovered: Motivations and their attitudinal and behavioral outcomes. Cyberpsychology, Behavior, and Social Networking, 15(12), 643–648. [CrossRef] [Google Scholar]
  25. Lin, T.C., Huang, S.L., & Hsu, C.J. (2015). A dual-factor model of loyalty to IT product - The case of smartphones. International Journal of Information Management, 35(2), 215–228. [CrossRef] [Google Scholar]
  26. Lindell, M.K., & Whitney, D.J. (2001). Accounting for common method variance in cross-sectional research designs. Journal of Applied Psychology, 86(1), 114–121. [CrossRef] [Google Scholar]
  27. Mouakket, S. (2019). Information self-disclosure on mobile instant messaging applications: Uses and gratifications perspective. Journal of Enterprise Information Management, 32(1), 98–117. [CrossRef] [Google Scholar]
  28. Munch, E. (2020). Social norms on working hours and peak times in public transport. Time and Society, 0(0), 1–30. [Google Scholar]
  29. Ohme, J., Vanden Abeele, M.M.P., Van Gaeveren, K., Durnez, W., & De Marez, L. (2020). Staying informed and bridging “social distance”: Smartphone news use and mobile messaging behaviors of flemish adults during the first weeks of the COVID-19 pandemic. Socius: Sociological Research for a Dynamic World, 6, 1–14. [Google Scholar]
  30. Padmavathy, C., Lee, S. (Ally), Pattusamy, M., Dey, M.K., & Swapana, M. (2018). The role of perceived benefits and personality traits on mobile instant messaging users’ responses. Asia Pacific Journal of Marketing and Logistics, 30(5), 1277–1293. [CrossRef] [Google Scholar]
  31. Park, J.C., Kim, S., & Lee, H. (2020). Effect of work-related smartphone use after work on job burnout: Moderating effect of social support and organizational politics. Computers in Human Behavior, 105(May 2019), 106194. [CrossRef] [Google Scholar]
  32. Perrigino, M.B., & Raveendhran, R. (2020). Managing remote workers during quarantine: Insights from organizational research on boundary management. Behavioral Science and Policy, 2020, 1–8. [Google Scholar]
  33. Podsakoff, P.M., Mackenzie, S.B., Lee, J.Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. [CrossRef] [Google Scholar]
  34. Preacher, K.J., & Hayes, A.F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. [CrossRef] [Google Scholar]
  35. Rehman, M.S., & Waheed, A. (2011). An empirical study of impact of job satisfaction on job performance in the public sector organizations. Interdisciplinary Journal of Contemporary Research in Business, 2(9), 167–181. [Google Scholar]
  36. Richter, A. (2020). Locked-down digital work. International Journal of Information Management, 55(May). [Google Scholar]
  37. Ringle, C.M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. Bonningstedt. [Google Scholar]
  38. Safieddine, F., & Nakhoul, I. (2021). Mobile Instant Messaging (M.I.M.) in improving S.M.E. in manufacturing: Case study. Wireless Personal Communications, 0(0), 1–17. [Google Scholar]
  39. Sarstedt, M., Hair, J.F., Ringle, C.M., Thiele, K.O., & Gudergan, S.P. (2016). Estimation issues with PLS and CBSEM : Where the bias lies ! ☆. Journal of Business Research, 69(10), 3998–4010. [CrossRef] [Google Scholar]
  40. Schlachter, S., McDowall, A., Cropley, M., & Inceoglu, I. (2018). Voluntary work-related technology use during non-work time: A narrative synthesis of empirical research and research agenda. International Journal of Management Reviews, 20(4), 825–846. [CrossRef] [Google Scholar]
  41. Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons. [Google Scholar]
  42. Sheer, V.C., & Rice, R.E. (2017). Mobile instant messaging use and social capital: Direct and indirect associations with employee outcomes. Information and Management, 54(1), 90–102. [CrossRef] [Google Scholar]
  43. Shmueli, G., Sarstedt, M., Hair, J.F., Cheah, J.H., Ting, H., Vaithilingam, S., & Ringle, C.M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 55(11), 2322–2347. [CrossRef] [Google Scholar]
  44. Smock, A.D., Ellison, N.B., Lampe, C., & Wohn, D.Y. (2011). Facebook as a toolkit: A uses and gratification approach to unbundling feature use. Computers in Human Behavior, 27(6), 2322–2329. [CrossRef] [Google Scholar]
  45. Talukder, A.K.M., Vickers, M., & Khan, A. (2018). Supervisor support and work-life balance: Impacts on job performance in the Australian financial sector. Personnel Review, 47(3), 727–744. [CrossRef] [Google Scholar]
  46. Wong, I.K.A. (2016). Linking firms, employees, and customers: A multilevel research agenda for hospitality studies. Cornell Hospitality Quarterly, 57(1), 7–20. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.