Open Access
SHS Web Conf.
Volume 147, 2022
SCAN’22 - 10e Séminaire de Conception Architecturale Numérique
Article Number 02001
Number of page(s) 15
Section Collaboration
Published online 12 October 2022
  1. Ellen MacArthur Foundation, Towards the Circular Economy: Economy and business rationale for accelerated transition, J. Ind. Ecol. 98 p (2013) [Google Scholar]
  2. W. Polspoel and M. Charlier, Circubuild, naslagwerk circulair bouwen. Redactiebureau Palindroom, 280 p (2020) [Google Scholar]
  3. Service Public de Wallonie, Circular Wallonia. Stratégie de déploiement de l’économie circulaire, Jambes, 110 p (2021) [Google Scholar]
  4. R. Charef, E. Ganjian, and S. Emmitt, Socio-economic and environmental barriers for a holistic asset lifecycle approach to achieve circular economy: A pattern-matching method, Technol. Forecast. Soc. Chang., 170, p. 120798 (2021) [CrossRef] [Google Scholar]
  5. Q. Li and Y. Wang, Blockchain’s role in supporting circular supply chains in the built environment, IEEE Int. Conf. Blockchain, pp. 578–583 (2021) [Google Scholar]
  6. S. Çetin, C. De Wolf, and N. Bocken, Circular Digital Built Environment?: An Emerging Framework, Sustain., 13, 11, p. 6348, (2021) [CrossRef] [Google Scholar]
  7. I. Atta, E. S. Bakhoum, and M. M. Marzouk, Digitizing material passport for sustainable construction projects using BIM, J. Build. Eng., 43, p. 103233 (2021) [CrossRef] [Google Scholar]
  8. N. Zhang, Q. Han, and B. de Vries, Building Circularity Assessment in the Architecture, Engineering, and Construction Industry?: A New Framework, Sustain., 12, 22 (2021) [Google Scholar]
  9. L. B. Jayasinghe and D. Waldmann, Development of a BIM-Based Web Tool as a Material and Component Bank for a Sustainable Construction Industry, Sustain., 12, no. 1766, (2020) [Google Scholar]
  10. J. Kanters, Design for Deconstruction in the Design Process?: State of the Art, Buildings, 8, 11, p. 150 (2018) [Google Scholar]
  11. M. Honic, I. Kovacic, and H. Rechberger, Improving the recycling potential of buildings through Material Passports ( MP ): An Austrian case study, J. Clean. Prod., 217, pp. 787–797 (2019) [CrossRef] [Google Scholar]
  12. M. R. Munaro, A. C. Fischer, N. C. Azevedo, and S. F. Tavares, Proposal of a building material passport and its application feasibility to the wood frame constructive system in Brazil Proposal of a building material passport and its application feasibility to the wood frame constructive system in Brazil, IOP Conf. Ser. Earth Environ. Sci., 225, p. 8, (2019) [Google Scholar]
  13. M. Heinrich and W. Lang, Material Passports - Best Practices: Innovative Solutions for a Transition to a Circular Economy in the Built Environment. Technische Universität München in association with BAMB (2019) [Google Scholar]
  14. M. Honic, I. Kovacic, P. Aschenbrenner, and A. Ragossnig, Material Passports for the end-of-life stage of buildings?: Challenges and potentials, J. Clean. Prod., 319, 128702 (2021) [CrossRef] [Google Scholar]
  15. F. Heisel and S. Rau-Oberhuber, Calculation and evaluation of circularity indicators for the built environment using the case studies of UMAR and Madaster, J. Clean. Prod., 243, p. 118482 (2020) [CrossRef] [Google Scholar]
  16. I. Kovacic, M. Honic, and M. Sreckovic, Digital Platform for Circular Economy in AEC Industry, Eng. Proj. Organ. J., 9, (2020) [Google Scholar]
  17. B. Sanchez, C. Rausch, C. Haas, and T. Hartmann, Resources, Conservation & Recycling A framework for BIM-based disassembly models to support reuse of building components, Resour. Conserv. Recycl., 175, p. 105825 (2021) [CrossRef] [Google Scholar]
  18. M. Honic, I. Kovacic, and H. Rechberger, Concept for a BIM-based Material Passport for buildings, IOP Conf. Ser. Earth Environ. Sci., p. 8 (2019) [Google Scholar]
  19. R. Charef, The use of Building Information Modelling in the circular economy context?: Several models and a new dimension of BIM ( 8D ) The use of Building Information Modelling in the circular economy context?: Several models and a new dimension of BIM (8D), Clean. Eng. Technol., 7, p. 100414 (2022) [CrossRef] [Google Scholar]
  20. A. Aguiar, R. Vonk, and F. Kamp, BIM and Circular Design, IOP Conf. Ser. Earth Environ. Sci., 225 (2019) [Google Scholar]
  21. ISO/TC 59/SC 13, ISO 19650-1:2018 Organisation et numérisation des informations relatives aux bâtiments et ouvrages de génie civil, y compris modélisation des informations de la construction (BIM) - Gestion de l’information par la modélisation des informations de la const. [Google Scholar]
  22. R. Charef and S. Emmitt, Uses of building information modelling for overcoming barriers to a circular economy, J. Clean. Prod., 285, p. 124854 (2021) [CrossRef] [Google Scholar]
  23. T. Rau and S. Oberuber, Material Matters. Het alternatief voor onze roofbouwmaatschappij, Bertram +. Haarlem, 224 p (2016) [Google Scholar]
  24. L. Luscuere, Materials Passports?: Optimising value recovery from materials, Waste Resour. Manag., 170 (2016) [Google Scholar]
  25. D. Mulhall, et al., Framework for Materials passports, BAMB (2017) [Google Scholar]
  26. E. M. Sauter, R. L. G. Lemmens, and P. Pauwels, CEO & CAMO Ontologies?: a circulation medium for materials in the construction industry, in: Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision: Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ghent, Belgium, pp. 1645–1652 (2018) [Google Scholar]
  27. K. G. Jensen and J. Sommer, Building A Circular Future, 284 p (2016) [Google Scholar]
  28. C. Eastman, P. Teicholz, R. Sacks, and K. Liston, BIM handbook: a guide to building information modeling for owners, managers, designers, engineers and contractors. Hoboken, John Wiley & Sons, 626 p (2011) [Google Scholar]
  29. S. Schaubroeck, R. Dewil, and K. Allacker, Circularity of building stocks. Modelling building joints and their disassembly in a 3D city model, Procedia CIRP, 105, pp. 712–720 (2022) [Google Scholar]
  30. I. Kovacic and M. Honic, Scanning and data capturing for BIM-supported resources assessment: a case study, J. Inf. Technol. Constr., 2, pp. 624–638 (2021) [Google Scholar]
  31. S. Schützenhofer, M. Honic, and I. Kovacic, Design Optimisation via BIM Supported Material Passports, eCAADe - D1.T2.S2. Heal. Mater. Archit. CITIES, 1, pp. 289–296 (2020) [Google Scholar]
  32. M. Honic and I. Kovacic, Model and data management issues in the integrated assessment of existing building stocks, Organ. Technol. Manag. Constr., 11, pp. 2148–2157 (2020) [Google Scholar]
  33. M. Honic, I. Kovacic, G. Sibenik, and H. Rechberger, Data- and stakeholder management framework for the implementation of BIM-based Material Passports, J. Build. Eng., 23, pp. 341–350 (2019) [CrossRef] [Google Scholar]
  34. A. Almusaed, I. Yitmen, A. Almsaad, I. Akiner, and M. Ernur Akiner, Coherent Investigation on a Smart Kinetic Wooden Façade Based on Material Passport Concepts and Environmental, Materials (Basel)., 14, 3771, p. 22 (2021) [Google Scholar]
  35. M. S. Hoosain, B. S. Paul, and S. Ramakrishna, The Impact of 4IR Digital Technologies and Circular Thinking on the United Nations Sustainable Development Goals, Sustain., 12, 10143 (2020) [Google Scholar]
  36. A. Almusaed, A. Almssad, R. Z. Homod, and I. Yitmen, Environmental Profile on Building Material Passports for Hot Climates, Sustain., 12, 3720, p. 20 (2020) [Google Scholar]
  37. A. D. Selman, Barriers of incorporating circular economy in building design - in a Danish context, in: The common of good in construction, Glasgow, UK (2020) [Google Scholar]
  38. A. Smeets, K. Wang, and M. P. Drewniok, Can Material Passports lower financial barriers for structural steel re-use? In: IOP Conf. Ser.: Earth Environ. Sci., 225, 012006 (2019) [CrossRef] [Google Scholar]
  39. T. Dounas, W. Jabi, and D. Lombardi, Topology generated non-fungible tokens?: blockchain as infrastructure for a circular economy in architectural design, In: PROJECTIONS, Proceedings of the 26th International CAADRIA 2021, 2, pp. 151–160 (2021) [CrossRef] [Google Scholar]
  40. N. Futas, N. Rajput, and R. Schiano-Phan, Cradle to Cradle and Whole-Life Carbon assessment - Barriers and opportunities towards a circular economic building sector Cradle to Cradle and Whole-Life Carbon assessment - Barriers and opportunities towards a circular economic building sector, IOP Conf. Ser. Earth Environ. Sci., 225, 012036, p. 8 (2019) [Google Scholar]
  41. Buildingsmart International, IFC 4.3. [Google Scholar]
  42. Ellen MacArthur Foundation, A building that can be reused: Brummen Town Hall [Google Scholar]
  43. Ellen MacArthur Foundation, A leader in the transition to a circular built environment: Arup Group Limited. [Google Scholar]
  44. H. Hartman, Circular thinking: Will Arup’s prototype change the way we design?, Architects Journal. [Google Scholar]
  45. Madaster Foundation, Madaster Manuals. [Google Scholar]
  46. E. Delcourt, A. Romnée, and J.-P. Lahaye, L’économie circulaire dans le secteur de la construction, Rev. Sci. des Ingénieurs Ind., 32, p. 15 (2018) [Google Scholar]
  47. BAMB, Buildins As Material Bancks [Google Scholar]
  48. W. Debacker and S. Manshoven, D1 Synthesis of the state-of-the-art. Key barriers and opportunities for Materials Passports and Reversible Building Design in the current system, BAMB (2016) [Google Scholar]
  49. E. Durmisevic et al., D13 Prototyping + feedback report. Testing BAMB results through prototyping and Pilot Projects, BAMB (2018) [Google Scholar]
  50. L. Luscuere, R. Zanatta, and D. Mulhall, Deliverable 7. Operational Materials Passports, BAMB (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.