Open Access
Issue
SHS Web of Conf.
Volume 174, 2023
2023 2nd International Conference on Science Education and Art Appreciation (SEAA 2023)
Article Number 03006
Number of page(s) 4
Section Landscape Management and Socio-Environmental Planning
DOI https://doi.org/10.1051/shsconf/202317403006
Published online 11 August 2023
  1. Pozsgay J., Szekanecz Z., Sarmay G. Antigen-specific immunotherapies in rheumatic diseases. Nat. Rev. Rheumatol. 2017;13:525–537. doi:10.1038/nrrheum.2017.107. [CrossRef] [Google Scholar]
  2. Green E.A, Choi Y.W, Flavell R.A Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: Highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity. 2002;16:183–191. doi: 10.1016/S1074-7613(02)00279-0. [CrossRef] [Google Scholar]
  3. Serra P., Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur. J. Immunol. 2018;48:751– 756. doi: 10.1002/eji.201747059. [CrossRef] [Google Scholar]
  4. Huang J., Brameshuber M., Zeng X., Xie J.M, Li Q.J, Chien Y.H, Valitutti S., Davis M.M A Single Peptide-Major Histocompatibility Complex Ligand Triggers Digital Cytokine Secretion in CD4(+) T Cells. Immunity. 2013;39:846–857. doi:10.1016/j.immuni.2013.08.036. [CrossRef] [Google Scholar]
  5. Tang Q.Z, Henriksen K.J, Bi M.Y, Finger E.B, Szot G., Ye J.Q, Masteller E.L, McDevitt H., Bonyhadi M., Bluestone J.A In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 2004;199:1455–1465. doi:10.1084/jem.20040139. [CrossRef] [Google Scholar]
  6. Fransson M., Piras E., Burman J., Nilsson B., Essand M., Lu B.F, Harris R.A, Magnusson P.U, Brittebo E., Loskog A.SI. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflamm. 2012;9:112. doi:10.1186/1742-2094-9-112. [CrossRef] [Google Scholar]
  7. Bluhm J., Kieback E., Marino S.F, Oden F., Wester-mann J., Chmielewski M., Abken H., Uckert W., Hopken U.E, Rehm A. CAR T Cells with Enhanced Sensitivity to B Cell Maturation Antigen for the Targeting of B Cell Non-Hodgkin’s Lymphoma and Multiple Myeloma. Mol. Ther. 2018;26:1906– 1920. doi:10.1016/j.ymthe.2018.06.012. [Google Scholar]
  8. Thornton A.M, Shevach E.M CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998;188:287–296. doi:10.1084/jem.188.2.287. [CrossRef] [Google Scholar]
  9. Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immuno-logic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998;10:1969–1980. doi: 10.1093/intimm/10.12.1969. [CrossRef] [Google Scholar]
  10. Miller A., Lider O., Weiner H.L Antigen-driven bystander suppression after oral administration of antigens. J. Exp. Med. 1991;174:791–798. doi:10.1084/jem.174.4.791. [CrossRef] [Google Scholar]
  11. Josefowicz S.Z, Lu L.F, Rudensky A.Y Regulatory T Cells: Mechanisms of Differentiation and Function. Annu. Rev. Immunol. 2012;30:531–564. doi:10.1146/ annurev.immunol.25.022106.141623. [CrossRef] [Google Scholar]
  12. Abbas A.K, Trotta E., Simeonov D.R, Marson A., Bluestone J.A Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol. 2018;3:eaat1482. doi:10.1126/sciimmunol.aat1482. [CrossRef] [Google Scholar]
  13. Fan M.Y, Low J.S, Tanimine N., Finn K.K, Priyadharshini B., Germana S.K, Kaech S.M, Turka [Google Scholar]
  14. L.A. Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell. Rep. 2018;25:1204– 1213.e4. doi: 10.1016/j.celrep.2018.10.002. [Google Scholar]
  15. Rudolph M.G, Stanfield R.L, Wilson I.A How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006;24:419–466. doi: 10.1146/annurev.immunol.23.021704.115658. [CrossRef] [Google Scholar]
  16. Giannoukakis N., Phillips B., Finegold D., Harnaha J., Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34:2026– 2032. doi:10.2337/dc11-0472. [CrossRef] [Google Scholar]
  17. Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci. 2020 Sep 23;21(19):7015. doi:10.3390/ijms21197015. PMID: 32977677; PMCID: PMC7582931. [CrossRef] [Google Scholar]
  18. Chae WJ, Bothwell ALM. Therapeutic Potential of Gene-Modified Regulatory T Cells: From Bench to Bedside. Front Immunol. 2018 Feb 16;9:303. doi:10.3389/fimmu.2018.00303. PMID: 29503652; PMCID: PMC5820299. [CrossRef] [Google Scholar]
  19. Zhussipbek Mukhatayev, Yekaterina O. Ostapchuk, Deyu Fang, I. Caroline Le Poole, Engineered antigen-specific regulatory T cells for autoimmune skin conditions, Autoimmunity Reviews, vol 20, 2021, https://www.sciencedirect.com/science/article/abs/pii/S1568997221000203?via%3Dihub [Google Scholar]
  20. Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol. 2020 Mar;20(3):158-172. doi: 10.1038/s41577-019-0232-6. Epub 2019 Dec 6. PMID: 31811270; PMCID: PMC7814338. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.