Open Access
Issue |
SHS Web Conf.
Volume 198, 2024
EduBIM2024 : Données, intelligences et nature de la ville durable
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 18 | |
Section | Conception assistée par les données | |
DOI | https://doi.org/10.1051/shsconf/202419802003 | |
Published online | 11 October 2024 |
- D. Claeys (2021), «Entre cogitation et computation : Comment déjouer l’obsolescence programmée de l’architecte ?» in Anticrise architecturale : Analyse d’une discipline immergée dans un monde numérique, PUL (Louvain-La-Neuve), pp. 157–176 [Google Scholar]
- L. Roobaert, D. Claeys, and S. Cleven (2024), «Espaces d’hybridation en conception architecturale : modalités collaboratives entre cognitions naturelles et artificielles in SHS Web of Conferences (Tunisie) [Google Scholar]
- J. McCarthy, M.L. Minsky, N. Rochester, and C.E. Shannon (1955), A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, Artificial Intelligence, 12 [Google Scholar]
- J.-P. Haton and M.-C. Haton (1989), L’Intelligence artificielle, Presses universitaires de France (Paris) [Google Scholar]
- J. McCarthy (2007), What is artificial intelligence?, University Stanford Press [Google Scholar]
- S. Legg and M. Hutter (2007), A Collection of Definitions of Intelligence, [Google Scholar]
- W. McCulloch and W. Pitts (1943), A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology 65, 99 [Google Scholar]
- F. Rosenblatt (1958), The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review 65, 386 [CrossRef] [PubMed] [Google Scholar]
- A. Turing (1950), Computing Machinery and Intelligence, Mind LIX (433) [CrossRef] [Google Scholar]
- J. Von Neumann (1945), First Draft of a Report on the EDVAC, Moore School of Electrical Engineering, Univeristy of Pennsylvania [Google Scholar]
- J. Weizenbaum (1966), ELIZA- a computer program for the study of natural language communication between man and machine, Communications of the ACM, 9 (36) [CrossRef] [Google Scholar]
- S.J. Russell and P. Norvig (2016), Artificial Intelligence: A Modern Approach, 3rd ed (Pearson, Upper Saddle River) [Google Scholar]
- R.A. Brooks, Intelligence without representation (1991), Artificial Intelligence, 47 (139) [CrossRef] [Google Scholar]
- B. Efron and T. Hastie (2016), Computer Age Statistical Inference: Algorithms, Evidence, and Data Science (Cambridge University Press, New York) [CrossRef] [Google Scholar]
- E.R. Kandel, J.-H. Schwartz, T.M. Jessel, S. Siegelbaum, and A.J. Hudspeth (2013), Principles of Neural Science, 5th ed (McGraw-Hill, New York) [Google Scholar]
- M.S. Gazzaniga (2018), The Cognitive Neurosciences, 4th ed (MIT Press, Cambridge, Mass) [Google Scholar]
- A.L. Samuel (1959), Some Studies in Machine Learning Using the Game of Checkers, IBM Journal of Research and Development, 3 (210) [CrossRef] [Google Scholar]
- C.M. Bishop (1995), Training with Noise is Equivalent to Tikhonov Regularization, Neural Computation, 7, 108 [CrossRef] [Google Scholar]
- Z. Han, M. Hong, and D. Wang (2017), Signal Processing and Networking for Big Data Applications, 1st ed. (Cambridge University Press) [CrossRef] [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014), Generative Adversarial Nets in Advances in Neural Information Processing Systems, edited by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Curran Associates, Inc.) [Google Scholar]
- G. Hinton (2007), Boltzmann machine, Scholarpedia, 2 (1668) [CrossRef] [Google Scholar]
- J.J. Hopfield (1982), Neural networks and physical systems with emergent collective computational abilities., Proceedings of the National Academy of Sciences, 79, 2554 [CrossRef] [PubMed] [Google Scholar]
- Y. LeCun, Y. Bengio and G. Hinton (2015), Deep learning, Nature, 521 (436) [CrossRef] [Google Scholar]
- J. Schmidhuber (2015), Deep learning in neural networks: An overview, Neural Networks, 61, 85 [CrossRef] [Google Scholar]
- M.I. Jordan and T.M. Mitchell (2015), Machine learning: Trends, perspectives, and prospects, Science, 349, 255 [CrossRef] [PubMed] [Google Scholar]
- M. Dascal (1989), Artificial intelligence and philosophy: The knowledge of representation, Systems Research, 6, 39 [CrossRef] [Google Scholar]
- M.A. Boden, editor (1990), The Philosophy of Artificial Intelligence (Oxford University Press, Oxford [England] ; New York) [Google Scholar]
- D. Andler (2023), Intelligence artificielle, intelligence humaine: la double énigme (Gallimard, Paris) [Google Scholar]
- C.S.R. Silva and J.M. Fonseca (2019), Artificial Intelligence and Algorithms in Intelligent Systems: Advanced Analytics: Moving Forward Artificial Intelligence (AI), Algorithm Intelligent Systems (AIS) and General Impressions from the Field in Artificial Intelligence and Algorithms in Intelligent Systems, edited by R. Silhavy (Springer International Publishing, Cham), pp. 308–317 [Google Scholar]
- W. Bauer and C. Vocke (2020), Work in the Age of Artificial Intelligence -Challenges and Potentials for the Design of New Forms of Human-Machine Interaction in Advances in Human Factors, Business Management and Leadership, edited by J.I. Kantola and S. Nazir (Springer International Publishing, Cham), pp. 493–501 [Google Scholar]
- R. Bommasani, K. Klyman, S. Longpre, S. Kapoor, N. Maslej, B. Xiong, D. Zhang, and P. Liang (2023), The Foundation Model Transparency Index [Google Scholar]
- F. Chollet, Deep Learning with Python (2021), 2nd ed (Manning Publications, Shelter Island) [Google Scholar]
- D. Mendeleïev (1869), La dépendance entre les propriétés des masses atomiques des éléments [Google Scholar]
- J. Gustafson, D. Rover, S. Elbert and M. Carter (1991), The design of a scalable, fixed-time computer benchmark, Journal of Parallel and Distributed Computing, 12 (388) [CrossRef] [Google Scholar]
- P. Bachmann (1894), Die Analytische Zahlentheorie, Zahlentheorie, Band 2 (B.G. Teubner, Leipzig) [Google Scholar]
- Z. Bimurat, Y. Kim, R. Ismailova and B. Sagindykov (2023), Methods Of Navigating Algorithmic Complexity: Big-Oh And Small-Oh Notations, Scientific Journal of Astana IT University, 160 [CrossRef] [Google Scholar]
- F.A. Mala and R. Ali (2022), The Big-O of Mathematics and Computer Science, Journal of Applied Mathematics and Computation, 6 (1) [Google Scholar]
- S. Bae (2019), Big-O Notation in JavaScript Data Structures and Algorithms (Apress, Berkeley, CA), pp. 1–11 [Google Scholar]
- T. Hastie, R. Tibshirani, and J.H. Friedman (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. (Springer, New York) [Google Scholar]
- R.S. Sutton and A.G. Barto (2018), Reinforcement Learning: An Introduction, Second edition (The MIT Press, Cambridge, Massachusetts) [Google Scholar]
- M.R.B. Emdad (2017), Deep Learning is the Core Method of Machine Learning, International Journal of Engineering Research and Technology, 6 [Google Scholar]
- V. François-Lavet, P. Henderson, R. Islam, M.G. Bellemare and J. Pineau (2018), An Introduction to Deep Reinforcement Learning, Foundations and Trends® in Machine Learning 11 (219) [Google Scholar]
- D.P. Kingma and M. Welling (2013), Auto-Encoding Variational Bayes [Google Scholar]
- W. Reitman (1964), Heuristic decision procedures, open constraints, and the structure of ill-defined problems in Human Judgments and Optimality (John Wiley & Sons, New-York), pp. 282–315 [Google Scholar]
- D. Claeys (2013), Architecture & complexité : Un modèle systémique du processus de (co)conception qui vise l’architecture, PhD Thesis, Université Catholique de Louvain [Google Scholar]
- T. Oladipupo (2010), Types of Machine Learning Algorithms in New Advances in Machine Learning, edited by Y. Zhang (InTech) [Google Scholar]
- C.M. Bishop (2006), Pattern Recognition and Machine Learning (Springer, New York) [Google Scholar]
- K.P. Murphy (2022), Probabilistic Machine Learning: An Introduction (The MIT Press, Cambridge, Massachusetts) [Google Scholar]
- F. Osisanwo, O. Awodele, J. Hinmikaiye, O. Olakanmi and A.J. Akinjobi (2017), Supervised Machine Learning Algorithms: Classification and Comparison, International Journal of Computer Trends and Technology, 48 (128) [Google Scholar]
- G.E. Hinton and R.R. Salakhutdinov (2006), Reducing the Dimensionality of Data with Neural Networks, Science, 313 (504) [CrossRef] [Google Scholar]
- L. van der Maaten and G. Hinton (2008), Visualizing Data using t-SNE, Journal of Machine Learning Research, 9 (2579) [Google Scholar]
- C. Cortes and V. Vapnik (1995), Support-vector networks, Machine Learning, 20 (273) [Google Scholar]
- J. MacQueen (1967), Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1 (281) [Google Scholar]
- W. Feller (1976), An Introduction to Probability Theory and Its Applications. 1, 3rd ed., rev. print (Wiley, New York, NY) [Google Scholar]
- D.C. Montgomery, E.A. Peck and G.G. Vining (2012), Introduction to Linear Regression Analysis (John Wiley & Sons) [Google Scholar]
- I. Goodfellow, Y. Bengio and A. Courville (2016), Deep Learning (The MIT Press, Cambridge, Massachusetts) [Google Scholar]
- G. James, D. Witten, T. Hastie and R. Tibshirani (2013), editors, An Introduction to Statistical Learning: With Applications in R (Springer, New York) [Google Scholar]
- S. Chaillou (2019), AI + Architecture | Towards a New Approach (Harvard University) [Google Scholar]
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov (2014), Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research 15 (1929) [Google Scholar]
- B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba (2016), Learning Deep Features for Discriminative Localization, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929 [CrossRef] [Google Scholar]
- E.F. Camacho and C. Bordons (2007), Simple Implementation of GPC for Industrial Processes in Model Predictive Control (Springer, London), pp. 81–126 [Google Scholar]
- T. Chai and R.R. Draxler (2014), Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7 (1247) [CrossRef] [Google Scholar]
- S.V. Stehman (1997), Selecting and interpreting measures of thematic classification accuracy, Remote Sensing of Environment, 62 (77) [CrossRef] [Google Scholar]
- J. Louëdec, M. Chevalier, A. Garivier and J. Mothe (2015), Algorithmes de bandits pour la recommandation à tirages multiples, Document numérique, 18 (59) [Google Scholar]
- P.R. Rosenbaum and D.B. Rubin (1983), The central role of the propensity score in observational studies for causal effects, Biometrika, 70 (41) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.