Open Access
Issue
SHS Web Conf.
Volume 199, 2024
2024 International Conference on Language Research and Communication (ICLRC 2024)
Article Number 03022
Number of page(s) 8
Section Branding and Marketing
DOI https://doi.org/10.1051/shsconf/202419903022
Published online 23 October 2024
  1. G. Qian, Research Report Of Activating Users (Xiaohongshu), 2024.7.1, Retrieved 2024.8.1 from https://app.qian-gua.Com/#/workbench/re. [Google Scholar]
  2. M. Webster, 2023.09.18, Retrieved 2024.8.1 from www.merriam-webster.com/dictionary/susceptibility. [Google Scholar]
  3. China Statistics Press, China Population Census Yearbook, 2020.11.1, Retrieved 2024. 8.1 from https://www.stats.gov.cn/sj/pcsj/rkpc/7rp/zk/indexch.htm. [Google Scholar]
  4. Z. Liu, Research on Social Media Dependence and Media Needs--Taking College Students’ Microblog Dependence as an Example. Journalism University. (2013). [Google Scholar]
  5. G. Yu, H. Qu, The misinterpretation of “information cocoon” and the necessity of algorithmic pushing--A solution to the social and ethical dilemma in content distribution. Journal of Xinjiang Normal University (Philosophy and Social Science Edition). 41, 127-133 (2020). [Google Scholar]
  6. C. R. Sunstein, Infotopia: How Many Minds Produce Knowledge. Oxford: Oxford University Press. (2006). [CrossRef] [Google Scholar]
  7. C. R. Sunstein, Neither Hayek nor Habermas. Public Choice. 134, 87-95 (2008). [Google Scholar]
  8. W. Hart, D. Albarraci’n, A. H. Eagly, Feeling Validated Versus Being Correct: A MetaAnalysis of Selective Exposure to Information. Psychological Bulletin. 555588, 135(4) (2009). [Google Scholar]
  9. K. Westerwick, J. Meng, Reinforcement of the Political Self Through Selective Exposure to Political Messages. Journal of Communication. 61 (2), 349-368 (2011). [CrossRef] [Google Scholar]
  10. N. J. Stroud, Selective Exposure Theories//Kenski K, Jamieson K H. The Oxford Handbook of Political Communication. Oxford: Oxford University Press. (2017). [Google Scholar]
  11. M. Wojcieszak, What Predicts Selective Exposure Online: Testing Political Attitudes, Credibility, and Social Identity. Communication Research. 48 (5), 687-716 (2019). [Google Scholar]
  12. J. Mummolo, News from the Other Side: How Topic Relevance Limits the Prevalence of Partisan Selective Exposure. The Journal of Politics. 78 (3), 763-773 (2016). [CrossRef] [Google Scholar]
  13. T. D. Wilson, Information Behavior: An Interdisciplinary Perspective. Information Processing & Management. 33(4), 551-572, (1997). [CrossRef] [Google Scholar]
  14. S. Makri, L. Buckley, Down the Rabbit Hole: Investigating Disruption of the Information Encountering Process. Journal of the Association for Information Science and Technology. 71(2), 1-16, (2019). [Google Scholar]
  15. M. Cinelli, E. Brugnoli, A. L. Schmidt, Selective Exposure Shapes the News Diet. PLoS ONE. 15 (3), 1-17 (2020). [Google Scholar]
  16. M. E. Del Valle, R. B. Bravo. Echo Chambers in Parliamentary Twitter Networks: The Catalan Case. International Journal of Communication. 12, 1715-1735 (2018). [Google Scholar]
  17. W. Tsai, W. Tao, C. Chuan, Echo Chambers and Social Mediators in Public Advocacy Issue Networks. Public Relations Review. 46 (1), 1-11 (2020). [Google Scholar]
  18. S. Choi, H. W. Park, An Exploratory Approach to a Twitter Based Community Centered on a Political Goal in South Korea: Who Organized It, What They Shared, and How They Acted. New Media & Society. 16 (1), 129-148 (2014). [CrossRef] [Google Scholar]
  19. F. Justwan, B. Baumgaertner, J. E. Carlisle, A. K. Clark, M. Clark, Social media echo chambers and satisfaction with democracy among Democrats and Republicans in the aftermath of the 2016 US elections. Journal of Elections, Public Opinion and Parties. 28 (4), 424-442 (2018). [CrossRef] [Google Scholar]
  20. E. Dubois, S. Minaeian, A. Paquet-Labelle, S. Beaudry, Who to trust on social media: How opinion leaders and seekers avoid disinformation and echo chambers. Social media + society. 6 (2), 7-10 (2020). [CrossRef] [Google Scholar]
  21. H. Zhang, H. Xu. Research on the Causes of Internet Users’ Information Cocoon from the Perspective of S-O-R Theory. New Century Library, 12, 15-22 (2022). [Google Scholar]
  22. C. K. Chan, M. M. Zhao, P. S. Lee. Determinants of escape from echo chambers: The predictive power of political orientation, social media use, and demographics. Global media and China, 8(2) 155-173 (2023). [CrossRef] [Google Scholar]
  23. Y. Cheng, Y. Huang, Development and testing of an algorithmic information cocoon susceptibility scale. The Journalism. 03, 50-61 (2024). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.