Open Access
Issue |
SHS Web Conf.
Volume 202, 2024
The 1st International Conference on Environment and Smart Education (ICEnSE 2024)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 8 | |
Section | Communication and Technology Adoption | |
DOI | https://doi.org/10.1051/shsconf/202420205001 | |
Published online | 14 November 2024 |
- Baer, T., & Baer, T. (2019). Algorithmic Biases and Social Media. Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists, 95–106. [Google Scholar]
- Bandy, J., & Diakopoulos, N. (2021). More accounts, fewer links: How algorithmic curation impacts media exposure in Twitter timelines. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–28. [CrossRef] [Google Scholar]
- Bansal, G. (2024). Reprogramming the Software of the Mind: A New Framework for Cultural Homogenization. Journal of Global Information Technology Management, 27(1), 1–7. https://doi.org/10.1080/1097198X.2023.229802. [CrossRef] [Google Scholar]
- Bruns, A. (2017). Echo chamber? What echo chamber? Reviewing the evidence. 6th Biennial Future of Journalism Conference (FOJ17). [Google Scholar]
- Caled, D., & Silva, M. J. (2022). Digital media and misinformation: An outlook on multidisciplinary strategies against manipulation. Journal of Computational Social Science, 5(1), 123–159. [CrossRef] [Google Scholar]
- Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. [CrossRef] [Google Scholar]
- Dahlgren, P. M. (2021). A critical review of filter bubbles and a comparison with selective exposure. Nordicom Review, 42(1), 15–33. [CrossRef] [Google Scholar]
- Eg, R., Tønnesen, Ö. D., & Tennfjord, M. K. (2023). A scoping review of personalized user experiences on social media: The interplay between algorithms and human factors. Computers in Human Behavior Reports, 9, 100253. [CrossRef] [Google Scholar]
- Franziska, Z., Katrin, S., & Mechtild, S. (2019). Fake news in social media: Bad algorithms or biased users? Journal of Information Science Theory and Practice, 7(2), 40–53. [Google Scholar]
- Gillani, N., Yuan, A., Saveski, M., Vosoughi, S., & Roy, D. (2018). Me, my echo chamber, and I: introspection on social media polarization. Proceedings of the 2018 World Wide Web Conference, 823–831. [Google Scholar]
- Harambam, J., Helberger, N., & Van Hoboken, J. (2018). Democratizing algorithmic news recommenders: how to materialize voice in a technologically saturated media ecosystem. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180088. [CrossRef] [Google Scholar]
- Karizat, N., Delmonaco, D., Eslami, M., & Andalibi, N. (2021). Algorithmic folk theories and identity: How TikTok users co-produce Knowledge of identity and engage in algorithmic resistance. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–44. [CrossRef] [Google Scholar]
- Kitchens, B., Johnson, S. L., & Gray, P. (2020). Understanding echo chambers and filter bubbles: The impact of social media on diversification and partisan shifts in news consumption. MIS Quarterly, 44(4). [Google Scholar]
- Kuang, L., Huang, N., Hong, Y., & Yan, Z. (2019). Spillover effects of financial incentives on non-incentivized user engagement: Evidence from an online knowledge exchange platform. Journal of Management Information Systems, 36(1), 289–320. [CrossRef] [Google Scholar]
- Lu, S. (2020). Taming the news feed on Facebook: understanding consumptive news feed curation through a social cognitive perspective. Digital Journalism, 8(9), 1163–1180. [CrossRef] [Google Scholar]
- Luzsa, R. (2019). A Psychological and Empirical Investigation of the Online Echo Chamber Phenomenon. Universität Passau. [Google Scholar]
- McBrayer, J. P. (2020). Beyond fake news: Finding the truth in a world of misinformation. Routledge. [Google Scholar]
- Moon, Y. E., & Lewis, S. C. (n.d.). Social Media as Commodifier or Homogenizer? Journalists’ Social Media Use in Individualistic and Collectivist Cultures and Its Implications for Epistemologies of News Production. Digital Journalism, 1–20. https://doi.org/10.1080/21670811.2024.230398. [Google Scholar]
- Nechushtai, E., Zamith, R., & Lewis, S. C. (n.d.). More of the Same? Homogenization in News Recommendations When Users Search on Google, YouTube, Facebook, and Twitter. Mass Communication and Society, 1–27. https://doi.org/10.1080/15205436.2023.217360. [Google Scholar]
- Neubaum, G., Cargnino, M., & Maleszka, J. (2021). How Facebook users experience political disagreements and make decisions about the political homogenization of their online network. International Journal of Communication, 15, 20. [Google Scholar]
- Nguyen, C. T. (2020). Echo chambers and epistemic bubbles. Episteme, 17(2), 141–161. [CrossRef] [Google Scholar]
- Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. penguin UK. [Google Scholar]
- Pettis, B. T. (2022). Know Your Meme and the homogenization of web history. Internet Histories, 6(3), 263–279. https://doi.org/10.1080/24701475.2021.196865. [CrossRef] [Google Scholar]
- Pizolati, A. (2024). Digital Media, Social Bubbles, Extremism and Challenges Implicated in the Construction of Identity and Respect for Diversity and Cultural Pluralism. [Google Scholar]
- Purnomo, E. P., Loilatu, M. J., Nurmandi, A., Qodir, Z., Sihidi, I. T., & Lutfi, M. (2021). How Public Transportation Use Social Media Platform during Covid-19: Study on Jakarta Public Transportations’ Twitter Accounts? Webology, 18(1). [Google Scholar]
- Qureshi, I., Bhatt, B., Gupta, S., & Tiwari, A. A. (2022). Introduction to the role of information and communication technologies in polarization. In Causes and Symptoms of Socio-Cultural Polarization: Role of Information and Communication Technologies (pp. 1–23). Springer. [Google Scholar]
- Ranalli, C., & Malcom, F. (2023). What’s so bad about echo chambers? Inquiry, 1–43. [Google Scholar]
- Reed, T. V. (2018). Digitized lives: Culture, power and social change in the internet era. Routledge. [Google Scholar]
- Reviglio della Venaria, U. (2020). Personalization in Social Media: Challenges and Opportunities for Democratic Societies. [Google Scholar]
- Sapountzi, A., & Psannis, K. E. (2018). Social networking data analysis tools & challenges. Future Generation Computer Systems, 86, 893–913. [CrossRef] [Google Scholar]
- Shin, D., Hameleers, M., Park, Y. J., Kim, J. N., Trielli, D., Diakopoulos, N., Helberger, N., Lewis, S. C., Westlund, O., & Baumann, S. (2022). Countering algorithmic bias and disinformation and effectively harnessing the power of AI in media. Journalism & Mass Communication Quarterly, 99(4), 887–907. [CrossRef] [Google Scholar]
- Silva, S., & Kenney, M. (2018). Algorithms, platforms, and ethnic bias: An integrative essay. Phylon (1960-), 55(1 & 2), 9–37. [Google Scholar]
- Spohr, D. (2017). Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Business Information Review, 34(3), 150–160. [CrossRef] [Google Scholar]
- Srisermwongse, V. (2022). New Media and Identity. Pratt Institute. [Google Scholar]
- Tucker, J. A., Guess, A., Barberá, P., Vaccari, C., Siegel, A., Sanovich, S., Stukal, D., & Nyhan, B. (2018). Social media, political polarization, and political disinformation: A review of the scientific literature. Political Polarization, and Political Disinformation: A Review of the Scientific Literature (March 19, 2018). [Google Scholar]
- Van Dijck, J., Poell, T., & De Waal, M. (2018). The platform society: Public values in a connective world. Oxford university press. [Google Scholar]
- Wahyuni, H., Purnomo, E. P., & Fathani, A. T. (2021). Social media supports tourism development in the COVID-19 normal era in Bandung. Jurnal Studi Komunikasi, 5(3), 600–616. [Google Scholar]
- Wang, R., Bush-Evans, R., Arden-Close, E., Bolat, E., McAlaney, J., Hodge, S., Thomas, S., & Phalp, K. (2023). Transparency in persuasive technology, immersive technology, and online marketing: Facilitating users’ informed decision making and practical implications. Computers in Human Behavior, 139, 107545. [CrossRef] [Google Scholar]
- Wang, X., Sirianni, A. D., Tang, S., Zheng, Z., & Fu, F. (2020). Public discourse and social network echo chambers driven by socio-cognitive biases. Physical Review X, 10(4), 41042. [CrossRef] [Google Scholar]
- Williams, B. A., Brooks, C. F., & Shmargad, Y. (2018). How algorithms discriminate based on data they lack: Challenges, solutions, and policy implications. Journal of Information Policy, 8, 78–115. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.