Open Access
Issue
SHS Web Conf.
Volume 206, 2024
ERPA International Congresses on Education 2024 (ERPA 2024)
Article Number 01001
Number of page(s) 8
DOI https://doi.org/10.1051/shsconf/202420601001
Published online 09 December 2024
  1. S. Bannò, M. Matassoni. Back to grammar: Using grammatical error correction to automatically assess L2 speaking proficiency. Speech Communication, 157, 103025 (2024). https://doi.org/10.1016/j.specom.2023.103025 [CrossRef] [Google Scholar]
  2. X. Li, W. Hu. Peer versus teacher corrections through electronic learning communities and face-to-face classroom interactions and EFL learners’ passion for learning, speaking fluency, and accuracy. Heliyon, 10(4), e25849 (2024).. https://doi.org/10.1016/j.heliyon.2024.e25849 [CrossRef] [Google Scholar]
  3. X. Liu. Understanding the development and implementation of teachers’ beliefs of written corrective feedback: A study of two novice transborder teachers in mainland China. Teaching and Teacher Education, 142, 104519 (2024). https://doi.org/10.1016/j.tate.2024.104519 [CrossRef] [Google Scholar]
  4. S. Yeh, J. Lo, H. Chu. Application of online annotations to develop a web-based Error Correction Practice System for English writing instruction. System (Linköping), 47, 39–52 (2014). https://doi.org/10.1016/j.system.2014.09.015 [Google Scholar]
  5. C. Bryant, M. Felice, T. Briscoe. Automatic annotation and evaluation of error types for grammatical error correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 1074 (2017). https://doi.org/10.18653/v1/p17-1074 [Google Scholar]
  6. C. Bryant, Y. Zheng, M. Qorib, H. Cao, T. Briscoe. Grammatical Error Correction: A survey of the state of the art. Computational Linguistics Association for Computational Linguistics (Print), 1–59 (2023). https://doi.org/10.1162/coli_a_00478 [Google Scholar]
  7. K. Knill, M. Gales, P. Manakul, A. Caines. Automatic Grammatical error detection of non-native spoken learner English. 1109 (2019). https://doi.org/10.1109/icassp.2019.8683080 [Google Scholar]
  8. Y. Lu, S. Bannò, M. Gales. On assessing and developing spoken ’Grammatical Error Correction’ systems. In Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications, 51–60 (2022), Seattle, Washington. Association for Computational Linguistics https://doi.org/10.18653/v1/2022.bea-1.9 [Google Scholar]
  9. G. Havranek. When is corrective feedback most likely to succeed? International Journal of Educational Research, 37(3–4), 255–270 (2002). https://doi.org/10.1016/s0883-0355(03)00004-1 [CrossRef] [Google Scholar]
  10. J. Hunter. Can language learners hear their own errors? The identification of grammaticality in one’s own production, System, 111. 102933 (2022). https://doi.org/10.1016/j.system.2022.102933. [Google Scholar]
  11. Y Satake. How error types affect the accuracy of L2 error correction with corpus use. Journal of Second Language Writing, 50. 100757 (2020). https://doi.org/10.1016/j.jslw.2020.100757. [CrossRef] [Google Scholar]
  12. L. Sippel, L. Martin. Is corrective feedback during telecollaboration beneficial? The effects of peer and teacher corrections on L2 writing proficiency, Journal of Second Language Writing [Preprint]. (2023). https://doi.org/10.2139/ssrn.4445964. [Google Scholar]
  13. E. Ro, H. Kim. Directives to read for self-correction in peer-tutoring consultations for L2 writing, Linguistics and Education, 77, 101205 (2023). https://doi.org/10.1016/j.linged.2023.101205. [CrossRef] [Google Scholar]
  14. E. White, W. DeGenaro. Basic writing and disciplinary maturation: How chance conversations continue to shape the field. Journal of Basic Writing, 35(1), 5–22 (2016). https://doi.org/10.37514/jbw-j.2016.35.1.02 [CrossRef] [Google Scholar]
  15. H. Wulf. Communicative Teacher Talk: Vorschläge zu einer effektiven Unterrichtssprache. (Hueber, Berlin, 2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.