Open Access
Issue
SHS Web Conf.
Volume 214, 2025
CIFEM’2024 - 4e édition du Colloque International sur la Formation et l’Enseignement des Mathématiques et des Sciences & Techniques
Article Number 01006
Number of page(s) 20
DOI https://doi.org/10.1051/shsconf/202521401006
Published online 28 March 2025
  1. W.A. Weber, J. Czernin, C.J. Anderson, R.D. Badawi, H. Barthel, F. Bengel, L. Bodei, I. Buvat, M. DiCarli, M.M. Graham, J. Grimm, The future of nuclear medicine, molecular imaging, and theranostics. J. Nucl. Med. 61(Suppl. 2), 263S–272S (2020). https://doi.org/10.2967/jnumed.120.254532 [Google Scholar]
  2. T. Beyer, D.L. Bailey, U.J. Birk, I. Buvat, C. Catana, Z. Cheng, Q. Fang, F. Giove, C. Kuntner, E. Laistler, F. Moscato, Medical physics and imaging-A timely perspective. Front. Phys. 9, 634693 (2021). https://doi.org/10.3389/fphv.2021.634693 [Google Scholar]
  3. S.J. Lee, H.J. Park, Single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging for radiotherapy planning in patients with lung cancer: a meta-analysis. Sci. Rep. 10 (1), 14864 (2020). https://doi.org/10.1038/s41598-020-71445-5 [Google Scholar]
  4. Z. Ahmad, S. Rahim, M. Zubair, J. Abdul-Ghafar, Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagn. Pathol. 16, 1–16 (2021). https://doi.org/10.1186/s13000-021-01085-4 [Google Scholar]
  5. B. Saboury, T. Bradshaw, R. Boellaard, I. Buvat, J. Dutta, M. Hatt, A.K. Jha, Q. Li, C. Liu, H. McMeekin, M.A. Morris, Artificial intelligence in nuclear medicine: opportunities, challenges, and responsibilities toward a trustworthy ecosystem. J. Nucl. Med. 64 (2), 188–196 (2023). https://doi.org/10.2967/jnumed.121.263703 [Google Scholar]
  6. Oncu, E. (2025). Advancements in Nuclear Medicine Through Artificial Intelligence: A Comprehensive Review. https://doi.org/10.20944/preprints202501.0158.v1 [Google Scholar]
  7. L. Pinto-Coelho, How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering 10 (12), 1435 (2023). https://doi.org/10.3390/bioengineering10121435 [CrossRef] [Google Scholar]
  8. W.L. Bi, A. Hosny, M.B. Schabath, M.L. Giger, N.J. Birkbak, A. Mehrtash, T. Allison, O. Arnaout, C. Abbosh, I.F. Dunn, R.H. Mak, Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin. 69 (2), 127–157 (2019). https://doi.org/10.3322/caac.21552 [Google Scholar]
  9. N. Hasani, F. Farhadi, M.A. Morris, M. Nikpanah, A. Rhamim, Y. Xu, A. Pariser, M.T. Collins, R.M. Summers, E. Jones, E. Siegel, Artificial intelligence in medical imaging and its impact on the rare disease community: threats, challenges and opportunities. PET Clin. 17 (1), 13 (2022). https://doi.Org/10.1016/j.cpet.2021.09.009 [Google Scholar]
  10. A.K. Shukla, U. Kumar, Positron emission tomography: an overview. J. Med. Phys. 31 (1), 13–21 (2006). https://doi.org/10.4103/0971-6203.25665 [Google Scholar]
  11. J.J. Vaquero, P. Kinahan, Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu. Rev. Biomed. Eng. 17 (1), 385–414 (2015). https://doi.org/10.1146/annurev-bioeng-071114-040723 [Google Scholar]
  12. W. Jiang, Y. Chalich, M.J. Deen, Sensors for positron emission tomography applications. Sensors 19 (22), 5019 (2019). https://doi.org/10.3390/s19225019 [CrossRef] [PubMed] [Google Scholar]
  13. B.L. Holman, S.S. Tumeh, Single-photon emission computed tomography (SPECT): applications and potential. JAMA 263 (4), 561–564 (1990). https://doi.org/10.1001/jama.1990.03440040100036 [Google Scholar]
  14. A.B. Newberg, A. Alavi, Single photon emission computed tomography (SPECT): technique, New Encyclopedia of Neuroscience (2008). [Google Scholar]
  15. H.G. Gemmell, R.T. Staff, Single photon emission computed tomography (SPECT), in Practical Nuclear Medicine (Springer London, 2005), pp. 21–33. [Google Scholar]
  16. G.M. Currie, B. Iqbal, J.M. Wheat, R. Davidson, H. Kiat, Single photon emission computed tomography (SPECT)/computed tomography (CT): an introduction. Radiogr. 58 (3), 60–66 (2011). https://doi.org/10.1002/j.2051-3909.2011.tb00157.x [Google Scholar]
  17. I. Fogelman, G. Cook, O. Israel, H. Van der Wall, Positron emission tomography and bone metastases, in Seminars in Nuclear Medicine 35(2), 135–142 (WB Saunders, 2005). https://doi.org/10.1053/j.semnuclmed.2004.11.005 [Google Scholar]
  18. A. Kr, Use of gamma scintigraphy technique in pharma sectors. Int. J. Pharm. Res. 13(2) (2021). https://doi.org/10.31838/ijpr/2021.13.02.047 [Google Scholar]
  19. A. Nadaf, U. Jiba, A. Chaudhary, N. Hasan, M. Adil, Y.H. Mohammed, P. Kesharwani, F.J. Ahmad, Gamma scintigraphy in sensing drug delivery systems. Nucl. Eng. Technol. 56 (10), 4423–4436 (2024). https://doi.org/10.1016/j.net.2024.06.004 [Google Scholar]
  20. K. O’Shea, R. Nash, An introduction to convolutional neural networks. arXiv preprint arXiv:1404.1100 (2015). https://doi.org/10.48550/arXiv.1511.08458 [Google Scholar]
  21. R. Chauhan, K.K. Ghanshala, R.C. Joshi, Convolutional neural network (CNN) for image detection and recognition, in 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), pp. 278–282 (IEEE, 2018). https://doi.org/10.1109/ICSCCC.2018.8703316 [Google Scholar]
  22. P. Purwono, A. Ma’arif, W. Rahmaniar, H.I.K. Fathurrahman, A.Z.K. Frisky, Q.M. ul Haq, Understanding of convolutional neural network (CNN): a review. Int. J. Robot. Control Syst. 2(4), 739–748 (2022). https://doi.org/10.31763/ijrcs.v2i4.888 [Google Scholar]
  23. P. Tiwari, B. Pant, M.M. Elarabawy, M. Abd-Elnaby, N. Mohd, G. Dhiman, S. Sharma, CNN-based multiclass brain tumor detection using medical imaging. Comput. Intell. Neurosci. 2022 (1), 1830010 (2022). https://doi.org/10.1155/2022/1830010 [Google Scholar]
  24. A. Chattopadhyay, M. Maitra, MRI-based brain tumour image detection using CNNbased deep learning method. Neurosci. Informatics 2 (4), 100060 (2022). https://doi.Org/10.1016/j.neuri.2022.100060 [Google Scholar]
  25. C.N. Ladefoged, P. Hasbak, C. Hornnes, L. Højgaard, F.L. Andersen, Low-dose PET image noise reduction using deep learning: application to cardiac viability FDG imaging in patients with ischemic heart disease. Phys. Med. Biol. 66 (5), 054003 (2021). https://doi.org/10.1088/1361-6560/abe225 [Google Scholar]
  26. Z. Xie, T. Li, X. Zhang, W. Qi, E. Asma, J. Qi, Anatomically aided PET image reconstruction using deep neural networks. Med. Phys. 48 (9), 5244–5258 (2021). https://doi.org/10.1002/mp.15051 [Google Scholar]
  27. V.S. Kadimesetty, S. Gutta, S. Ganapathy, P.K. Yalavarthy, Convolutional neural network-based robust denoising of low-dose computed tomography perfusion maps. IEEE Trans. Radiat. Plasma Med. Sci. 3 (2), 137–152 (2018). https://doi.org/10.1109/TRPMS.2018.2860788 [Google Scholar]
  28. H. Salehinejad, S. Sankar, J. Barfett, E. Colak, S. Valaee, Recent advances in recurrent neural networks. arXiv preprint arXiv:1404.1100 (2017). https://doi.org/10.48550/arXiv.1801.01078 [Google Scholar]
  29. S. Das, A. Tariq, T. Santos, S.S. Kantareddy, I. Banerjee, Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential research, in Machine Learning for Brain Disorders, pp. 117–138 (2023). https://doi.org/10.1007/978-1-0716-3195-94 [Google Scholar]
  30. G. Vallathan, V.R. Yanamadni, R.G. Vidhya, A. Ravuri, C. Ambhika, V.V.S. Sasank, An analysis and study of brain cancer with RNN algorithm-based AI technique, in 2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), pp. 637–642 (IEEE, 2023). https://doi.org/10.1109/I-SMAC58438.2023.10290397 [Google Scholar]
  31. Y. Xu, A. Hosny, R. Zeleznik, C. Parmar, T. Coroller, I. Franco, R.H. Mak, H.J. Aerts, Deep learning predicts lung cancer treatment response from serial medical imaging. Clin. Cancer Res. 25 (11), 3266–3275 (2019). https://doi.org/10.1158/1078-0432.CCR-18-2495 [Google Scholar]
  32. M. Beeksma, S. Verberne, A. van den Bosch, E. Das, I. Hendrickx, S. Groenewoud, Predicting life expectancy with a long short-term memory recurrent neural network using electronic medical records. BMC Med. Inform. Decis. Mak. 19, 1–15 (2019). https://doi.org/10.1186/s12911-019-0775-2 [CrossRef] [Google Scholar]
  33. R. Cui, M. Liu, Alzheimer’s Disease Neuroimaging Initiative, RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 73, 1–10 (2019). https://doi.org/10.1016Z1.compmedimag.2019.01.005 [Google Scholar]
  34. D. Saxena, J. Cao, Generative adversarial networks (GANs) challenges, solutions, and future directions. ACM Comput. Surv. 54 (3), 1–42 (2021). https://doi.org/10.1145/3446374 [Google Scholar]
  35. Y. Chen, X.H. Yang, Z. Wei, A.A. Heidari, N. Zheng, Z. Li, H. Chen, H. Hu, Q. Zhou, Q. Guan, Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022). https://doi.Org/10.1016/j.compbiomed.2022.105382 [Google Scholar]
  36. A. Biswas, Md Abdullah Al, N. Imran, A.T. Sejuty, F. Fairooz, S. Puppala, S. Talukder, Generative adversarial networks for data augmentation, in Data Driven Approaches on Medical Imaging, pp. 159–177 (Springer Nature Switzerland, 2023). https://doi.org/10.1007/978-3-031-47772-08 [Google Scholar]
  37. Y. Zhang, H. Xie, S. Zhuang, X. Zhan, Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs), Journal of Artificial Intelligence General Science (JAIGS), 5 (1), 50–62 (2024). https://doi.org/10.60087/jaigs.v5i1.163 [Google Scholar]
  38. Z. Ni, W. Yang, S. Wang, L. Ma, and S. Kwong, Towards Unsupervised Deep Image Enhancement with Generative Adversarial Network, IEEE Transactions on Image Processing, 29, 9140–9151 (2020). https://doi.org/10.1109/TIP.2020.3023615 [Google Scholar]
  39. B. Yu, L. Zhou, L. Wang, Y. Shi, J. Fripp, and P. Bourgeat, Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis, IEEE Transactions on Medical Imaging, 38 (7), 1750–1762 (2019). https://doi.org/10.1109/TMI.2019.2895894 [Google Scholar]
  40. I. D. Apostolopoulos, N. D. Papathanasiou, D. J. Apostolopoulos, and G. S. Panayiotakis, Applications of Generative Adversarial Networks (GANs) in Positron Emission Tomography (PET) Imaging: A Review, European Journal of Nuclear Medicine and Molecular Imaging, 49 (11), 3717–3739 (2022). https://doi.org/10.1007/s00259-022-05805-w [Google Scholar]
  41. A. A. Showrov, M. T. Aziz, H. R. Nabil, J. R. Jim, M. M. Kabir, M. F. Mridha, N. Asai, and J. Shin, Generative Adversarial Networks (GANs) in Medical Imaging: Advancements, Applications, and Challenges, IEEE Access, (2024). https://doi.org/10.1109/ACCESS.2024.3370848 [Google Scholar]
  42. H. Askr, E. Elgeldawi, H. Aboul Ella, Y. A. Elshaier, M. M. Gomaa, and A. E. Hassanien, Deep Learning in Drug Discovery: An Integrative Review and Future Challenges, Artificial Intelligence Review, vol. 56, no. 7, pp. 5975–6037, (2023). https://doi.org/10.1007/s10462-022-10306-1 [Google Scholar]
  43. M. M. F. Alanazi, S. F. M. Almutairi, N. O. Alarjani, M. Y. A. Alghaylan, M. S. M. Aljawhari, and A. A. S. Alkhulaifi, Advancements in AI-Driven Diagnostic Radiology: Enhancing Accuracy and Efficiency, International Journal of Health Sciences, vol. 5, no. S2, pp. 1402–1414, (2024). https://doi.org/10.53730/ijhs.v8nS1.14928 [Google Scholar]
  44. H. Zainab, A. R. A. Khan, M. I. Khan, and A. Arif, Integration ofAI in Medical Imaging: Enhancing Diagnostic Accuracy and Workflow Efficiency, Global Insights in Artificial Intelligence and Computing, vol. 1, no. 1, pp. 1–14, (2025). https://doi.org/10.70445/giaic.1.1.2025.1-14 [Google Scholar]
  45. S. Dhankhar, S. Mujwar, N. Garg, S. Chauhan, M. Saini, P. Sharma, S. Kumar, S. Kumar Sharma, M. A. Kamal, and N. Rani, Artificial intelligence in the management of neurodegenerative disorders, CNS & Neurological Disorders-Drug Targets, vol. 23, no. 8, pp. 931–940, (2024). https://doi.org/10.2174/0118715273266095231009092603 [Google Scholar]
  46. N. F. Noaman, B. M. Kanber, A. A. Smadi, L. Jiao, and M. K. Alsmadi, Advancing oncology diagnostics: AI-enabled early detection of lung cancer through hybrid histological image analysis, IEEE Access, (2024). https://doi.org/10.1109/ACCESS.2024.3397040 [Google Scholar]
  47. K. Li, K. Liu, Y. Zhong, M. Liang, P. Qin, H. Li, R. Zhang, S. Li, X. Liu, Assessing the predictive accuracy of lung cancer, metastases, and benign lesions using an artificial intelligence-driven computer aided diagnosis system. Quant. Imaging Med. Surg. 11, 3629 (2021). https://doi.org/10.21037/qims-20-1314 [Google Scholar]
  48. S. Chen, [Retracted] Models of Artificial Intelligence□ Assisted Diagnosis of Lung Cancer Pathology Based on Deep Learning Algorithms. J. Healthcare Eng. 2022, 3972298 (2022). https://doi.org/10.1155/2022/3972298 [Google Scholar]
  49. V.G. Yogeshappa, AI-driven Precision medicine: Revolutionizing personalized treatment plans. Int. J. Comput. Eng. Technol. 15, 455–474 (2024). https://doi.org/10.5281/zenodo.13841278 [Google Scholar]
  50. H.H. Shah, S.K. Lodhi, AI in Personalized Medicine: Tailoring Treatment Plans Based on Individual Patient Data. Global Trends Sci. Technol. 1, 15–29 (2025). https://doi.org/10.70445/gtst.1.1.2025.15-29 [CrossRef] [Google Scholar]
  51. J.F. Brosch-Lenz, A. Delker, F. Schmidt, J. Tran-Gia, On the use of artificial intelligence for dosimetry of radiopharmaceutical therapies. Nuklearmedizin-NuclearMed. 62, 379388 (2023). https://doi.org/10.1055/a-2179-6872 [Google Scholar]
  52. H. Kim, C. Park, Enhancing low radio-dosage thyroid imaging using deep learning and Monte Carlo-based absorbed dose measurement in nuclear medicine. Nuclear Eng. Technol. 103334 (2024). https://doi.org/10.1016Z1.net.2024.11.036 [Google Scholar]
  53. H. Azadinejad, M. F. Rad, A. Shariftabrizi, A. Rahmim, H. Abdollahi, Optimizing cancer treatment: exploring the role of AI in radioimmunotherapy. Diagnostics 15 (3), 397 (2025). https://doi.org/10.3390/diagnostics15030397 [Google Scholar]
  54. A. K. Jha, S. Mithun, V. Rangarajan, L. Wee, A. Dekker, Emerging role of artificial intelligence in nuclear medicine. Nuclear Med. Commun. 42 (6), 592–601 (2021). https://doi.org/10.1097/MNM.0000000000001381 [Google Scholar]
  55. M. Decuyper, J. Maebe, R. Van Holen, S. Vandenberghe, Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys. 8 (1), 81 (2021). https://doi.org/10.1186/s40658-021-00426-y [Google Scholar]
  56. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G. Z. Yang, XAI—Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019). https://doi.org/10.1126/scirobotics.aay7120 [Google Scholar]
  57. R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T. Shah, G. Morgan, R. Ranjan, Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), pp. 1–33 (2023). https://doi.org/10.1145/3561048 [CrossRef] [Google Scholar]
  58. G.B. Bilgin, C. Bilgin, B.J. Burkett, J.J. Orme, D.S. Childs, M.P. Thorpe, T.R. Halfdanarson, G.B. Johnson, A.T. Kendi, O. Sartor, Theranostics and artificial intelligence: new frontiers in personalized medicine. Theranostics 14(6), p. 2367 (2024). https://doi.org/10.7150/thno.94788 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.