Open Access
Issue
SHS Web Conf.
Volume 214, 2025
CIFEM’2024 - 4e édition du Colloque International sur la Formation et l’Enseignement des Mathématiques et des Sciences & Techniques
Article Number 01005
Number of page(s) 8
DOI https://doi.org/10.1051/shsconf/202521401005
Published online 28 March 2025
  1. A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2009. [Google Scholar]
  2. S. Li and W. K. Liu, Meshfree and particle methods and their applications, Applied Mechanics Reviews, 55 (1): 1–34, 2002. [Google Scholar]
  3. E. Tadmor, A review of numerical methods for nonlinear partial differential equations, Bulletin of the American Mathematical Society, 49 (4): 507–554, 2012. [CrossRef] [Google Scholar]
  4. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, Mineola, 2001. [Google Scholar]
  5. J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge, 2007. [Google Scholar]
  6. C. Canuto, M. Hesthaven, and A. Quarteroni, Spectral Methods in Fluid Dynamics, Springer Science & Business Media, Berlin, 2012. [Google Scholar]
  7. I. E. Lagaris, A. L. Likas, and D. Solidakis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Transactions on Neural Networks, 9 (5): 987–1000, 1998. [Google Scholar]
  8. I. E. Lagaris, P. Varagavatini, and K. V. Makhoul, Artificial neural networks for solving boundary value problems, IEEE Transactions on Neural Networks, 11 (5): 1041–1049, 2000. [Google Scholar]
  9. J. Blechschmidt and O. G. Ernst, Three Ways to Solve Partial Differential Equations with Neural Networks — A Review, GAMM-Mitteilungen, 2021. [Google Scholar]
  10. M. Raissi, G. E. Karniadakis, and P. Perdikaris, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378:686–707, 2019. [Google Scholar]
  11. J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, Journal of Computational Physics, 375:1339–1364, 2018. [Google Scholar]
  12. L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, DeepONet: Learning Nonlinear Operators for Identifying Partial Differential Equations Based on the Universal Approximation Theorem of Operators, Nature Machine Intelligence, 3 (3): 218–229, 2021. [Google Scholar]
  13. S. Li, Z. Zhang, L. Lu, and G. E. Karniadakis, Fourier Neural Operator for Parametric Partial Differential Equations, arXiv preprint arXiv:1404.1100, 2020. [Google Scholar]
  14. J. Yang, Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations, arXiv preprint arXiv:1404.1100, 2020. [Google Scholar]
  15. R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018. [Google Scholar]
  16. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1404.1100, 2014. [Google Scholar]
  17. J. Duchi, Y. Chandra, and C. Malik, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 12:2121–2159, 2011. [Google Scholar]
  18. K. Hornik, Universal approximation theorems for multilayer feedforward networks, Neural Networks, 2 (5): 359–366, 1989. [Google Scholar]
  19. Jagtap, Ameya D., and George Em Karniadakis. Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics, vol. 28, no. 5, 2020, pp. 2002–2041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.