Open Access
SHS Web of Conferences
Volume 24, 2016
2015 International Seminar on Social Science and Humanistic Education (SSHE 2015)
Article Number 01015
Number of page(s) 4
Section Social science
Published online 05 February 2016
  1. K. J. Falconer. 1990. Fractal Geometry-Mathematical Foundations and Applications, New York, Wiley. [Google Scholar]
  2. K. J. Falconer. 1985. The Geometry of Fractal Sets, Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  3. E. Ayer & R. S. Strichartz. 1999. Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc. 351: 3725–3741. [CrossRef] [Google Scholar]
  4. Z. L. Zhou & M. Wu. 1999. The Hausdorff measure of a Sierpinski carpet, Sci. China (Series A), 47: 673–680. [Google Scholar]
  5. Z. L. Zhou & L. Feng. 2000. A new estimate of the Hausdorff measure of the Sierpinski gasket, Nonlinearity, 13: 479–491. [CrossRef] [Google Scholar]
  6. B. Jia, Z. L. Zhou & Z. Zhu. 2002. A lower bound for the Hausdorff measure of the Sierpinski gasket, Nonlinearity, 15: 393–404. [CrossRef] [Google Scholar]
  7. Z. L. Zhou & L. Feng. 2004. Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: a brief survey of recent results, Nonlinearity, 17: 493–502. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.