Open Access
SHS Web of Conferences
Volume 27, 2016
5e Congrès Mondial de Linguistique Française
Article Number 11008
Number of page(s) 12
Section Ressources et Outils pour l’analyse linguistique
Published online 04 July 2016
  1. Bagheri, A., Saraee, M., and De Jong, F. ADM-LDA : An aspect detection model based on topic modelling using the structure of review sentences. Journal of Information Science 40, 5 (2014), 621–636. [CrossRef] [Google Scholar]
  2. Buitelaar, P., Olejnik, D., and Sintek, M. A protégé plug-in for ontology extraction from text based on linguistic analysis. In The Semantic Web : Research and Applications (2004), vol. 3053, pp. 31–44. [CrossRef] [Google Scholar]
  3. Candito, M., Crabbé, B., and Denis, P. Statistical French Dependency Parsing : Treebank Conversion and First Results. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10) (2010). [Google Scholar]
  4. Cimiano, P., Mädche, A., Staab, S., and Völker, J. Ontology learning. In Handbook on Ontologies. 2009, pp. 245–267. [CrossRef] [Google Scholar]
  5. Cimiano, P., and Völker, J. Text2onto - a framework for ontology learning and data-driven change discovery. In Proceedings of the 10th International Conference on Applications of Natural Language to Information Systems (NLDB) (2005), vol. 3513, pp. 227–238. [Google Scholar]
  6. Croce, D., Garzoli, F., Montesi, M., Cao, D. D., and Basili, R. Enabling Advanced Business Intelligence in Divino. In Proceedings of the 7th International Workshop on Information Filtering and Retrieval co-located with the 13th Conference of the Italian Association for Artificial Intelligence (2013), pp. 61–72. [Google Scholar]
  7. Daille, B., Dubreil, E., Monceaux, L., and Vernier, M. Annotating opinion-evaluation of blogs : the Blogo-scopy corpus. Language Resources and Evaluation 45, 4 (2011), 409–437. [CrossRef] [Google Scholar]
  8. Dalal, M. K., and Zaveri, M. A. Semisupervised Learning Based Opinion Summarization and Classification for Online Product Reviews. Appl. Comp. Intell. Soft Comput. (2013). [Google Scholar]
  9. Dufour-Lussier, V., Ber, F. L., Lieber, J., Meilender, T., and Nauer, E. Semi-automatic annotation process for procedural texts : An application on cooking recipes. CoRR (2012). [Google Scholar]
  10. Erdmann, M., Maedche, A., Schnurr, H.-P., and Staab, S. From manual to semi-automatic semantic annotation : About ontology-based text annotation tools. In Proceedings of the COLING - Workshop on Semantic Annotation and Intelligent Content (2000). [Google Scholar]
  11. Fortuna, B., Grobelnik, M., and Mladenic, D. Ontogen : semi-automatic ontology editor. In Proceedings of the 2007 conference on Human interface : Part II (2007), pp. 309–318. [Google Scholar]
  12. Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing ? International Journal of Human-Computer Studies 43, 5–6 (1995), 907 – 928. [CrossRef] [Google Scholar]
  13. Guarino, N. Some ontological principles for designing upper level lexical resources. In Proceedings of the First International Conference on Language Resources and Evaluation (1998). [Google Scholar]
  14. Hammer, H. L., Solberg, P. E., and Øvrelid, L. Sentiment classification of online political discussions : a comparison of a word-based and dependency-based method. In Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (2014), pp. 90–96. [Google Scholar]
  15. Hu, M., and Liu, B. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2004), pp. 168–177. [Google Scholar]
  16. Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies - Volume 1 (2011), pp. 151–160. [Google Scholar]
  17. Khan, F. H., Bashir, S., and Qamar, U. TOM : Twitter Opinion Mining Framework Using Hybrid Classification Scheme. Decis. Support Syst. 57 (2014), 245–257. [CrossRef] [Google Scholar]
  18. Lapponi, E., Read, J., and Ovrelid, L. Representing and Resolving Negation for Sentiment Analysis. In Data Mining Workshops (ICDMW) (2012). [Google Scholar]
  19. Lark, J., Morin, E., and Peña Saldarriaga, S. CANÉPHORE : a French corpus for aspect-based sentiment analysis evaluation. TALN, 2015. [Google Scholar]
  20. Mele, F., Sorgente, A., and Vettigli, G. An Italian Corpus for Aspect Based Sentiment Analysis of Movie Reviews. In First Italian Conference on Computational Linguistics CLiC-it (2014). [Google Scholar]
  21. Mondary, T., Després, S., Nazarenko, A., and Szulman, S. Construction d’ontologies à partir de textes : la phase de conceptualisation. In Actes des 19èmes Journées Francophones d’Ingénierie des Connaissances (IC’08) (2008), pp. 87–98. [Google Scholar]
  22. Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M., and Edwards, D. D. Artificial intelligence : a modern approach. Prentice-Hall, Inc., 1996. [Google Scholar]
  23. Steinberger, J., Brychcín, T., and Konkol, M. Aspect-Level Sentiment Analysis in Czech. In Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (2014). [Google Scholar]
  24. Szulman, S. Une nouvelle version de l’outil terminae de construction de ressources termino-ontologiques. In 22èmes journées francophones d’Ingénierie des Connaissances (poster) (2011), p. 3. [Google Scholar]
  25. Uschold, M., and King, M. Towards a methodology for building ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI-95 (1995). [Google Scholar]
  26. Vilares, D., Alonso, M. A., and Gómez-Rodríguez, C. On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages. Journal of the Association for Information Science and Technology (2015). [Google Scholar]
  27. Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., and Palakarska, T. A Review Corpus for Argumentation Analysis. In Computational Linguistics and Intelligent Text Processing, vol. 8404. 2014, pp. 115–127. [Google Scholar]
  28. Wiebe, J., Wilson, T., and Cardie, C. Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation 39, 2-3 (2005), 165–210. [CrossRef] [Google Scholar]
  29. Wu, Y., Zhang, Q., Huang, X., and Wu, L. Phrase Dependency Parsing for Opinion Mining. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing : Volume 3 (2009), pp. 1533–1541. [Google Scholar]
  30. Yimam, S. M., de Castilho, R. E., Gurevych, I., and Biemann, C. Automatic Annotation Suggestions and Custom Annotation Layers in WebAnno. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. System Demonstrations (2014), pp. 91–96. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.