Open Access
Issue
SHS Web Conf.
Volume 156, 2023
International Conference on Teaching and Learning – Digital Transformation of Education and Employability (ICTL 2022)
Article Number 04001
Number of page(s) 4
Section T&L Intelligence and Analytics
DOI https://doi.org/10.1051/shsconf/202315604001
Published online 13 January 2023
  1. Verhoef, C.P., Broekhuizen, T., Bart, Y., Bhattacharya, A., John., Fabian, N., Haenlein, M. (2021). Journal of Business Research. https://doi.org/10.1016/j.jbusres.2019.09.022 [Google Scholar]
  2. Vitenko, T., Shanaida, V., Droździel, P., Madlenak, R. (2018). Assessment of higher education in global environmnet. INTED2018 Proceedings, pp. 4040-4045 [CrossRef] [Google Scholar]
  3. Awad, M., Khanna, R. (2015). Machine Learning. In: Efficient Learning Machines. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9_1 [Google Scholar]
  4. Sarker, I.H.(2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT. SCI. 2, 160. https://doi.org/10.1007/s42979-021-00592-x [CrossRef] [Google Scholar]
  5. Alloghani, M., Obe, D., Mustafina, J., Hussain, A., Aljaaf, A. (2020). A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. Supervised and Unsupervised Learning in Datascience. Springer. https://doi.org/10.1007/978-3030-22475-2_1 [Google Scholar]
  6. Estrada-Real, A.C., Cantu-Ortiz, F.J.(2022). A data analytics approach for university competitiveness: the QS world university rankings. Int J Interact Des Manuf 16, 871–891. https://doi.org/10.1007/s12008-022-00966-2 [CrossRef] [Google Scholar]
  7. Kumar, S., Chong, I. (2018). Correlation Analysis to Identify the Effective Data in Machine Learning: Prediction of Depressive Disorder and Emotion States. Int J Environ Res Public Health. 15(12):2907. doi: 10.3390/ijerph15122907. PMID: 30572595; PMCID: PMC6313491. [CrossRef] [Google Scholar]
  8. Velthoen, V., Dombry, C., Cai, J., Engelke, S., (2021). Gradient boosting for extreme quantile regression. arXiv. https://doi.org/10.48550/arXiv.2103.00808 [Google Scholar]
  9. Sigrist, F. (2021). Gaussian Process Boosting. arXiv. https://doi.org/10.48550/arXiv.2004.02653 [Google Scholar]
  10. Alexei, B. (2018). Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio. http://dx.doi.org/10.2139/ssrn.3177507 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.