Open Access
Issue |
SHS Web Conf.
Volume 206, 2024
ERPA International Congresses on Education 2024 (ERPA 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/shsconf/202420601021 | |
Published online | 09 December 2024 |
- A. Bikner-Ahsbahs & S. Prediger, Networking of Theories: An Approach for Exploiting the Diversity of Theoretical Approaches. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education: Seeking new frontiers (pp. 483–506). Springer, Berlin, Heidelberg (2010). [CrossRef] [Google Scholar]
- L. English, & B. Sriraman, Theories of Mathematics Education: A global survey of theoretical frameworks / trends in mathematics education research. Zentralblatt für Didaktik der Mathematik, 37(6), 450–456 (2005). https://doi.org/10.1007/BF02655853 [CrossRef] [Google Scholar]
- S. Prediger, F. Arzarello, M. Bosch & A. Lenfant, Comparing, Combining, Coordinating-Networking strategies for connecting theoretical approaches. Thematic Issue of Zentralblatt für Didaktik der Mathematik, 40(2), 163–327 (2008). https://doi.org/10.1007/s11858-008-0093-0 [CrossRef] [Google Scholar]
- S. Prediger, A. Bikner-Ahsbahs & F. Arzarello, Networking strategies and methods for connecting theoretical approaches-First steps towards a conceptual framework. Zentralblatt für Didaktik der Mathematik, 40(2), 165–17 (2008). https://doi.org/10.1007/s11858-008-0086-z [CrossRef] [Google Scholar]
- A. Bikner-Ahsbahs & S. Prediger, Diversity of Theories in Mathematics EducationHow can we deal with it? Zentralblatt für Didaktik der Mathematik, 38(1), 52–57 (2006). https://doi.org/10.1007/BF02655905 [CrossRef] [Google Scholar]
- I. Kidron, A. Lenfant, M. Artigue, A. Bikner-Ahsbahs & T. Dreyfus, Toward networking three theoretical approaches: The case of social interaction. Zentralblatt für Didaktik der Mathematik, 40(2), 247–267 (2008). https://doi.org/10.1007/s11858-008-0079-y [CrossRef] [Google Scholar]
- A. Bikner-Ahsbahs, Networking of theories: Why and how? In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), Proceedings of the sixth Congress of the European Society for Research in Mathematics Education (pp. 6–15). Lyon: Institut National de Recherche Pédagogique (2010). [Google Scholar]
- R. Duval, A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1), 103–131 (2006). https://doi.org/10.1007/s10649-006-0400-z [CrossRef] [Google Scholar]
- J. Habermas, On the Pragmatics of Communication. The MIT Press, Cambridge, Massachusetts (1998). [Google Scholar]
- R. Duval, Understanding the Mathematical Way of Thinking-The Registers of Semiotic Representations. Springer International Publishing (2017). [CrossRef] [Google Scholar]
- P. Ernest, Varieties of constructivism: Their metaphors, epistemologies and pedagogical implications. Hiroshima Journal of Mathematics Education, 2, 1–14 (1994). [Google Scholar]
- L. Radford, Connecting theories in mathematics education: Challenges and possibilities. Zentralblatt für Didaktik der Mathematik, 40, 317–327 (2008). https://doi.org/10.1007/s11858-008-0090-3 [CrossRef] [Google Scholar]
- J. Hiebert & T. P. Carpenter, Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 65–97). Macmillan Publishing Co, Inc (1992). [Google Scholar]
- J. Kilpatrick, J. Swafford & B. Findell, Adding it up: Helping children learn mathematics. Washington, D.C: National Academy of Sciences National Research Council (2001). [Google Scholar]
- L. Radford, On culture and mind: A post-Vygotskian Semiotic perspective, with an example from Greek mathematical thought. In M. Anderson, A. Sa´enz-Ludlow, S. Zellweger, & V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 49–79). Ottawa: Legas (2003). [Google Scholar]
- L. Radford, On theories in mathematics education and their conceptual differences. In B. Sirakov, P. de Souza, & M. Viana (Eds.), Proceedings of the International congress of mathematicians (Vol. 4 (pp. 4055–4074). World Scientific Publishing Co (2018). [Google Scholar]
- P. Boero, Habermas’ theory of rationality as a comprehensive frame for conjecturing and proving in school. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (pp. 185–192). Prague: PME (2006). [Google Scholar]
- P. Boero & F. Morselli, The use of algebraic language in mathematical modelling and proving in the perspektive of Habermas’ theory of rationality. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 964–973). Lyon France (2009). [Google Scholar]
- F. Morselli & P. Boero, Proving as a rational behaviour: Habermas’ construct of rationality as a comprehensive frame for research on the teaching and learning of proof. In V. Durand-Guerrier, S. Soury-Lavergne & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 211–220). Lyon France (2009). [Google Scholar]
- P. Boero, N. Douek, F. Morselli & B. Pedemonte, Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. Proceedings of the 34th conference of the International Group for the Psychology of Mathematics Education, 1, 179–205 (2010). [Google Scholar]
- P. Boero & N. Planas, Habermas’ construct of rational behavior in mathematics education: New advances and research questions. Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education, 1, 205–235 (2014). [Google Scholar]
- S. Urhan, & A. Bülbül, Analysis of mathematical proving in geometry based on Habermas’ construct of rationality. Mathematics Education Research Journal, 35, 929959 (2022). https://doi.org/10.1007/s13394-022-00420-2 [Google Scholar]
- S. Urhan, & A. Bülbül, The analysis of the algebraic proving process based on Habermas’ construct of rationality. Hacettepe University Journal of Education, 37(3), 1154–1175 (2022). 10.16986/HUJE.2021069742 [Google Scholar]
- S. Urhan, & Y. Zengin, Investigating university students’ argumentations and proofs using dynamic mathematics software in collaborative learning, debate, and selfreflection stages. International Journal of Research in Undergraduate Mathematics Education, 10, 380–407 (2023). https://doi.org/10.1007/s40753-022-00207-7 [Google Scholar]
- Y. Zhuang & A. Conner, Teachers’ use of rational questioning strategies to promote student participation in collective argumentation. Educational Studies in Mathematics, 111(2), 345–365 (2022). https://doi.org/10.1007/s10649-022-10160-6 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.