Open Access
Issue |
SHS Web Conf.
Volume 214, 2025
CIFEM’2024 - 4e édition du Colloque International sur la Formation et l’Enseignement des Mathématiques et des Sciences & Techniques
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/shsconf/202521401010 | |
Published online | 28 March 2025 |
- M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Comput. Sci., vol. 136, pp. 16–24, Jan. (2018), DOI: 10.1016/J.PROCS.2018.08.233. [Google Scholar]
- T. Baker et al., “Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges,” (2019), [Online]. Available: www.nesta.org.uk [Google Scholar]
- C. C. Aggarwal, “Neural Networks and Deep Learning,” Neural Netw. Deep Learn., (2018), DOI: 10.1007/978-3-319-94463-0. [Google Scholar]
- S. A. D. Popenici and S. Kerr, “Exploring the impact of artificial intelligence on teaching and learning in higher education,” Res. Pract. Technol. Enhanc. Learn., vol. 12, no. 1, pp. 1–13, Dec. (2017), DOI: 10.1186/S41039-017-0062-8/METRICS. [Google Scholar]
- M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science,” pp. 3–21, (2020), DOI: 10.1007/978-3-030-22475-2_1. [CrossRef] [Google Scholar]
- D. Clark, Artificial intelligence for learning: how to use AI to support employee development. (2020), p. 320. [Google Scholar]
- N. T. Heffernan and C. L. Heffernan, “The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching,” Int. J. Artif. Intell. Educ., vol. 24, no. 4, pp. 470–497, Oct. (2014), DOI: 10.1007/S40593-014-0024-X/FIGURES/7. [Google Scholar]
- L. Chen, P. Chen, and Z. Lin, “Artificial Intelligence in Education: A Review,” IEEE Access, vol. 8, pp. 75264–75278, (2020), DOI: 10.1109/ACCESS.2020.2988510. [CrossRef] [Google Scholar]
- I. Roll and R. Wylie, “Evolution and Revolution in Artificial Intelligence in Education,” Int. J. Artif. Intell. Educ., vol. 26, no. 2, pp. 582–599, Jul. (2016), DOI: 10.1007/S40593-016-0110-3/TABLES/8. [Google Scholar]
- Z. Swiecki, A. R. Ruis, D. Gautam, V. Rus, and D. Williamson Shaffer, “Understanding when students are active-in-thinking through modeling-in-context,” Br. J. Educ. Technol., vol. 50, no. 5, pp. 2346–2364, Sep. (2019), DOI: 10.1111/BJET.12869. [CrossRef] [Google Scholar]
- S. Yuan, T. He, H. Huang, R. Hou, and M. Wang, “Automated Chinese Essay Scoring Based on Deep Learning,” Comput. Mater. Contin., vol. 65, no. 1, pp. 817–833, Jul. (2020), DOI: 10.32604/CMC.2020.010471. [Google Scholar]
- F. Qin, K. Li, and J. Yan, “Understanding user trust in artificial intelligence-based educational systems: Evidence from China,” Br. J. Educ. Technol., vol. 51, no. 5, pp. 1693–1710, Sep. (2020), DOI: 10.1111/BJET.12994. [CrossRef] [Google Scholar]
- D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement,” Int. J. Surg., vol. 8, no. 5, pp. 336–341, Jan. (2010), DOI: 10.1016/j.ijsu.2010.02.007. [Google Scholar]
- S. Z. Salas-Pilco, K. Xiao, and X. Hu, “Artificial Intelligence and Learning Analytics in Teacher Education: A Systematic Review,” Educ. Sci., vol. 12, no. 8, (2022), DOI: 10.3390/educsci12080569. [Google Scholar]
- I.-A. Chounta, E. Bardone, A. Raudsep, and M. Pedaste, “Exploring Teachers’ Perceptions of Artificial Intelligence as a Tool to Support their Practice in Estonian K- 12 Education,” Int. J. Artif. Intell. Educ., vol. 32, no. 3, pp. 725–755, (2022), DOI: 10.1007/s40593-021-00243-5. [Google Scholar]
- P. Lameras and S. Arnab, “Power to the Teachers: An Exploratory Review on Artificial Intelligence in Education,” Inf. Switz., vol. 13, no. 1, (2022), DOI: 10.3390/info13010014. [Google Scholar]
- T. K. F. Chiu, B. L. Moorhouse, C. S. Chai, and M. Ismailov, “Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbot,” Interact. Learn. Environ., (2023), DOI: 10.1080/10494820.2023.2172044. [Google Scholar]
- S. Polak, G. Schiavo, and M. Zancanaro, “Teachers’ Perspective on Artificial Intelligence Education: an Initial Investigation,” presented at the Conference on Human Factors in Computing Systems - Proceedings, (2022). DOI: 10.1145/3491101.3519866. [Google Scholar]
- I. Celik, “Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education,” Comput. Hum. Behav., vol. 138, 2023, DOI: 10.1016/j.chb.2022.107468. [Google Scholar]
- M. Tedre et al., “Teaching machine learning in K-12 Classroom: Pedagogical and technological trajectories for artificial intelligence education,” IEEE Access, vol. 9, pp. 110558–110572, (2021), DOI: 10.1109/ACCESS.2021.3097962. [Google Scholar]
- X. Huang, “Aims for cultivating students’ key competencies based on artificial intelligence education in China,” Educ. Inf. Technol., vol. 26, no. 5, pp. 5127–5147, (2021), DOI: 10.1007/s10639-021-10530-2. [Google Scholar]
- W. Bagunaid, N. Chilamkurti, and P. Veeraraghavan, “AISAR: Artificial IntelligenceBased Student Assessment and Recommendation System for E-Learning in Big Data,” Sustain. Switz., vol. 14, no. 17, (2022), DOI: 10.3390/su141710551. [Google Scholar]
- I. Khan, A. R. Ahmad, N. Jabeur, and M. N. Mahdi, “An artificial intelligence approach to monitor student performance and devise preventive measures,” Smart Learn. Environ., vol. 8, no. 1, (2021), DOI: 10.1186/s40561-021-00161-y. [CrossRef] [Google Scholar]
- M. Ciolacu, A. F. Tehrani, L. Binder, and P. M. Svasta, “Education 4.0 - Artificial Intelligence Assisted Higher Education: Early recognition System with Machine Learning to support Students’ Success,” presented at the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging, SIITME 2018 - Proceedings, (2018), pp. 23–30. DOI: 10.1109/SIITME.2018.8599203. [Google Scholar]
- C. S. Chai, P.-Y. Lin, M. S.-Y. Jong, Y. Dai, T. K. F. Chiu, and B. Huang, “Factors Influencing Students’ Behavioral Intention to Continue Artificial Intelligence Learning,” presented at the Proceedings - 2020 International Symposium on Educational Technology, ISET 2020, (2020), pp. 147–150. DOI: 10.1109/ISET49818.2020.00040. [Google Scholar]
- F. Ouyang, M. Wu, L. Zheng, L. Zhang, and P. Jiao, “Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course,” Int. J. Educ. Technol. High. Educ., vol. 20, no. 1, (2023), DOI: 10.1186/s41239-022-00372-4. [Google Scholar]
- R. Yilmaz and F. G. Karaoglan Yilmaz, “The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming selfefficacy and motivation,” Comput. Educ. Artif. Intell., vol. 4, (2023), DOI: 10.1016/j.caeai.2023.100147. [Google Scholar]
- C. S. Chai, P.-Y. Lin, M. S.-Y. Jong, Y. Dai, T. K. F. Chiu, and J. Qin, “Perceptions of and Behavioral Intentions towards Learning Artificial Intelligence in Primary School Students,” Educ. Technol. Soc., vol. 24, no. 3, pp. 89–101, (2021). [Google Scholar]
- W. Yang, “Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation,” Comput. Educ. Artif. Intell., vol. 3, (2022), DOI: 10.1016/j.caeai.2022.100061. [Google Scholar]
- B. Cope, M. Kalantzis, and D. Searsmith, “Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies,” Educ. Philos. Theory, vol. 53, no. 12, pp. 1229–1245, (2021), DOI: 10.1080/00131857.2020.1728732. [Google Scholar]
- G. Kortemeyer, “Could an artificial-intelligence agent pass an introductory physics course,” Phys. Rev. Phys. Educ. Res., vol. 19, no. 1, (2023), DOI: 10.1103/PhysRevPhysEducRes.19.010132. [Google Scholar]
- B. Williamson, “New digital laboratories of experimental knowledge production: Artificial intelligence and education research,” Lond. Rev. Educ., vol. 18, no. 2, pp. 209–220, (2020), DOI: 10.14324/LRE.18.2.05. [Google Scholar]
- W. Villegas-Ch, A. Arias-Navarrete, and X. Palacios-Pacheco, “Proposal of an Architecture for the Integration of a Chatbot with Artificial Intelligence in a Smart Campus for the Improvement of Learning,” Sustain. Switz., vol. 12, no. 4, (2020), DOI: 10.3390/su12041500. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.