Open Access
SHS Web Conf.
Volume 53, 2018
International Conference on Humanities and Social Sciences (ICHSS 2018)
Article Number 05004
Number of page(s) 13
Section Teaching and Learning
Published online 16 October 2018
  1. Ambrose, S., & Lovett, M. (2014). Prior knowledge is more than content: Skills and beliefs also impact learning. In V. Benassi, C. Overson, & C. Hakala, Applying Science of learning in education: Infusing psychological science into the curriculum (pp. 7–19). Retrieved from the Society for the Teaching of Psychology web site: [Google Scholar]
  2. Anderson, G. (2006). Assuring Quality/ Resisting Quality Assurance: Academics’ responses to‘quality’ in some Australian universities. Quality in Higher Education,, 12(2), 161–173. [CrossRef] [Google Scholar]
  3. Biggs, J., & Tang, C. (2011). Teaching for quality learning at University: What the student does. Berkshire: McGraw Hill. [Google Scholar]
  4. Bolkan, S., & Goodboy, A. (2011). Behavioural indicators of teansformational leadership in the college classroom. Qualitative Research Reports in Communication, 12(1), 10–18. DOI: 10.1080/17459435.2011.601520. [CrossRef] [Google Scholar]
  5. Choy, S. C., Yim, J. S., & Tan, P. L. (2017). Students’ and teachers’ perceptions of learning quality and learning outcomes in a Malaysian university. Journal of Institutional Research in South East Asia, 15(1), 41–62. [Google Scholar]
  6. Choy, S. C., Yim, S., & Tan, P. L. (2017). Students’ perceptions of quality learning in a Malaysian university A mixed method approach. Quality Assurance in education, [Google Scholar]
  7. Christophel, D. (1990). The relationships among teacher immediacy behaviors, student motivation, and learning. Communication Education, 39:4, 323–340, DOI:10.1080/03634529009378813. [CrossRef] [Google Scholar]
  8. Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British Journal of Management, 17, 263–282 ,DOI: 10.1111/j.1467-8551.2006.00500.x. [CrossRef] [Google Scholar]
  9. Doll, W. E. (1993). A post-modern perspective on curriculum. New York: Teachers College Press. [Google Scholar]
  10. Duschl, R., & Hamilton, R. (2010). Learning science. In R. E. Mayer, & P. A. Alexander, Handbook of research on learning and instruction (pp. 78–107). London: Routlege. [Google Scholar]
  11. Elassy, N. (2015). The concepts of quality, quality assurance and quality enhancement. Quality Assurance in Education, 23 (3), 250–261. [CrossRef] [Google Scholar]
  12. Ennis, C., & Chen, A. (2011). Learning motor skill in physical education. In R. Mayer, & P. Alexander, Handbook of research on learning and instruction (pp. 148–165). London: Routledge. [Google Scholar]
  13. Entwistle, N. J., & Peterson, E. R. (2004). Conceptions of learning and knowledge in higher education: Relationships with study behaviourand influences of learning environments. International Journal of Education Research, 41, 407–428. [CrossRef] [Google Scholar]
  14. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. journal of marketing research, 48, 39–50. [Google Scholar]
  15. Girash, J. (2014). Metacognition and instruction. In V. A. Benassi, C. E. Overson, & C. M. Hakala, Applying science of learning in education: Infusing psychological science into the curriculum. (pp. 152–168). Retrieved from the Society for the Teaching of Psychology web site: [Google Scholar]
  16. Goodboy, A., & Myers, S. (2008). The effect of teacher confirmation on student communication and learning outcomes. Communication Education, 57(2), 153–179. DOI: 10.1080/03634520701787777. [CrossRef] [Google Scholar]
  17. Goodboy, K., & Bolkan, S. (2009). College teacher misbehaviors: Direct and indirect effects on student communication behavior and traditional learning outcomes. Journal of Communication, 73:2, 204–219, DOI: 10.1080/10570310902856089. [Google Scholar]
  18. Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modelling (PLS-SEM). Los Angeles: Sage. [Google Scholar]
  19. Hake, R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64–74. doi: [CrossRef] [Google Scholar]
  20. Handelsman, J., Ebert-May, D., Beichner, R., Bruns, P., Chang, A., DeHaan, R., et al. (2004). Scientific teaching. Science, 304, 521–522. DOI: 10.1126/science.1096022. [CrossRef] [Google Scholar]
  21. Harks, B., Rakoczy, K., Hattie, J., Besser, m., & Klieme, E. (2014). The effects of feedback on achievement, interest and self-evaluation: the role of feedback’s perceived usefulness. Educational Psychology, 34:3, 269–290. DOI: 10.1080/01443410.2013.785384. [CrossRef] [Google Scholar]
  22. Hattie, J., & Gan, M. (2011). Instruction based on feedback. In R. E. Mayer, & P. A. Alexander, Handbook of Research on Learning and Instruction (pp. 249–271). London: Taylor & Francis. [Google Scholar]
  23. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, Vol. 77, No. 1 (Mar., 2007), pp. 81–112, 77(1), 81–112. [CrossRef] [Google Scholar]
  24. Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis. Review of Educational Research, 66(2 ), 99-136. DOI: 10.3102/00346543066002099. [CrossRef] [Google Scholar]
  25. Hensler, J., Ringle, C., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the Academy of Marketing Science, 43(1),115–135. [CrossRef] [Google Scholar]
  26. Kobayashi, K. (2005). What limits the encoding effect of note-taking?: A meta-analytic examination. Contemporary Educational Psychology, 30, 242–262. doi:10.1016/j.cedpsych.2004.10.001. [CrossRef] [Google Scholar]
  27. Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105 (3), 805–820. DOI: 10.1037/a0032583. [CrossRef] [Google Scholar]
  28. Langstrand, J., Cronemyr, P., & Poksinska, B. (2015). Practise what you preach: quality of education in education on quality. Total Quality Management & Business Excellence, 26 (11-12) , 1202–1212, DOI: 10.1080/14783363.2014.925290. [CrossRef] [Google Scholar]
  29. Lee, C. H., & Kalyuga, S. (2014). Expertise reversal effect and its instructional implications. In V. Benassi, C. Overson, & C. Hakala, Applying science of learning in education: Infusing psychological science into the curriculum (pp. 31–44). Retrieved from the Society for the Teaching of Psychology web site: [Google Scholar]
  30. Lizzio, A., Wilson, K., & Simons, R. (2002). University students’ perceptions of the learning environment and academic outcomes: Implications for theory and practice. Studies in Higher Education , 27(1), 27–52. [Google Scholar]
  31. Ministry of Education Malaysia. (2015). Malaysia Education Blueprint 2015–2025 (Higher Education). Putrajaya: Ministry of Education Malaysia. [Google Scholar]
  32. Mottet, T., Parker-Raley, J., Cunningham, C., & Beebe, S. (2005). The relationships between teacher nonverbal immediacy and student course workload and teacher availability expectations. Communication Research Reports, 22(4), 275–282. DOI: 10.1080/000368105000317482. [CrossRef] [Google Scholar]
  33. Nicholson, K. (2011). Quality assurance in higher education: A review of the literature. Ontario: Council of Ontario Universities Degree Level Expectations Project, McMaster University. [Google Scholar]
  34. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behaviour Research methods, 36(4) 717–731. [Google Scholar]
  35. Samudra, P. G., Kai, I. M., Cortina, S., & Miller, K. F. (2016). No second chance to make a first impression: The “thin-slice” effect on instructor ratings and learning outcomes in higher education. Journal of Educational Measurement, 53(3), 313–331. DOI: 10.1111/jedm.12116. [CrossRef] [Google Scholar]
  36. Tagg, J. (2010). The learning-paradigm campus: From singleto double-loop learning. New Directions for teaching and Learning , 123, 51–61. DOI:10.1002/tl.409. [CrossRef] [Google Scholar]
  37. Tyler, R. (2013). Basic prinicples of curriculum and instruction. Chicago: The University of Chicago Press. [CrossRef] [Google Scholar]
  38. Whalen, D., & Shelley, M. (2010). Academic success for STEM and non-STEM majors. Journal of STEM Education, 11(1), 46–60. [Google Scholar]
  39. Zhao, X., Lynch, J. G., & Chen, Q. (2010). Baron and Kenny: Myths and Truths about Mediation Analysis. Journal of Consumer Research, 37,(2), 197–206. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.