Open Access
SHS Web Conf.
Volume 62, 2019
17th International Scientific Conference “Problems of Enterprise Development: Theory and Practice” 2018
Article Number 13002
Number of page(s) 4
Section Improvement of Accounting and Analytical Support of Sustainable Development of Social and Economic Systems
Published online 15 March 2019
  1. G.I. Khaustova, E.B. Panina, T.A. Stepanova, Evaluation of factors effect on financial stability of livestock organi-zations. Economics: Yesterday, Today and Tomorrow, 6(10A), 117-129 (2016). [in Rus.] [Google Scholar]
  2. B. Hirtle, A. Kovner, J. Vickery, Assessing financial stability: The capital and loss assessment under stress scenarios (CLASS) model. Journal of Banking & Finance, 69, 35-55. DOI: 10.1016/j.jbankfin.2015.09.021(2016). [CrossRef] [Google Scholar]
  3. S.P. Kyurdzhiev, A.A. Mambetova, E.P. Peshkova, An integral evaluation of the financial state of the regional en-terprises. Economica Regiona – Economy of Region, 12(2), 586-601. DOI: 10.17059/2016-2-22 (2016). [CrossRef] [Google Scholar]
  4. E.I. Sukhanova, S.Y. Shirnaeva, Different approaches to macroeconomic processes simulation and forecasting. Fun-damental Research, 12, 406-411 (2015). [in Rus.]. [Google Scholar]
  5. E.I. Sukhanova, S.Y. Shirnaeva, A.G. Mokronosov, Econometric models for forecasting of macroeconomic indices. International Journal of Environmental and Science Education, 11(16), 9191-9205 (2016). [Google Scholar]
  6. G.A. Gadelshina, A.V. Aksyanova, Forecasting enterprise profits using a multi-trend model. Bulletin of Kazan Technological University, 16(1), 277-281 (2013). [in Rus.]. [Google Scholar]
  7. O.Y. Patlasov, N.V. Vasina,) Logit-regression technique for modeling the credit rating of legal entities agricultural organizations (based on the regulations of Sberbank of Russia). Human Science: Humanitarian Studies, 2(10), 85-95 (2012. [in Rus.]. [Google Scholar]
  8. D.S. Bidzhoyan, Model for assessing the probability of revocation of a license from the Russian bank. Finance: Theory and Practice, 22(2), 26-37 (2018). [in Rus.]. [CrossRef] [Google Scholar]
  9. M. Irfan, S. Saha, S.K. Singh, A random effects multinomial logit model for the determinants of exit modes: Evi-dence from a panel of US manufacturing firms. Journal of Economic Studies, 45(4), 791-809. (2018). [CrossRef] [Google Scholar]
  10. V. Lapo, Efficiency of investment stimulation methods in a timber industry complex: An econometric research. Ap-plied Econometrics, 1(33), 30-50 (2014). [in Rus.]. [Google Scholar]
  11. J.M. Pereira, M. Basto, A.F. das Silva, Comparing logit model with discriminant analysis for predicting bankruptcy in Portuguese hospitality sector. European Journal of Tourism Research, 16, 276-280 (2017). [Google Scholar]
  12. D.A. Hensher, S. Jones, Forecasting corporate bankruptcy: Optimizing the performance of the mixed logit model. ABACUS-A Journal of Accounting Finance and Business Studies, 43(3), 241-264. DOI: 10.1111/j.1467-6281.2007.00228.x (2007). [Google Scholar]
  13. V. Boguslauskas, R. Mileris, Estimation of credit risk by artificial neural networks models. Inzinerine Ekonomika – Engineering Economics, 4, 7-14 (2009). [Google Scholar]
  14. Y.Q. Wei, B. Liu, X.M. Liu, Entry modes of foreign direct investment in China: a multinomial logit approach. Jour-nal of Business Research, 58(11), 1495-1505. DOI: 10.1016/j.jbusres.2004.10.002 (2005). [CrossRef] [Google Scholar]
  15. E.A. Fedorova, E.V. Gilenko, The use of binary choice models to predict bank failures. Economics and Mathemati-cal Methods, 49(1), 106-118 (2013). [in Rus.]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.