Open Access
Issue
SHS Web Conf.
Volume 78, 2020
7e Congrès Mondial de Linguistique Française
Article Number 11003
Number of page(s) 15
Section Ressources et outils pour l'analyse linguistique
DOI https://doi.org/10.1051/shsconf/20207811003
Published online 04 September 2020
  1. Abdaoui, A., Azé, J., Bringay, S., and Poncelet, P. (2017). FEEL: A French Expanded Emotion Lexicon. Language Resources and Evaluation, 51(3), 833–855. https://doi.org/10.1007/s10579-016-9364-5 [CrossRef] [Google Scholar]
  2. Al-Rfou, R., Kulkarni, V., Perozzi, B., and Skiena, S. (2015). Polyglot-NER: Massive Multilingual Named Entity Recognition. Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, British Columbia, Canada, April 30 - May 2, 2015. [Google Scholar]
  3. Bailly, A., and Beguin, H. (2005). Introduction à la géographie humaine (éd. 8). Paris: Armand Colin. [Google Scholar]
  4. Blake, B. P., Agarwal, N., Wigand, R. T., and Wood, J. D. (2010). Twitter Quo Vadis: Is Twitter bitter or are tweets sweet? 2010 Seventh International Conference on Information Technology: New Generations, 1257–1260. IEEE. [CrossRef] [Google Scholar]
  5. Blanche-Benveniste, C., Bilger, M., Rouget, C., Van Den Eynde, K., Mertens, P., and Willems, D. (1990). Le français parlé (études grammaticales). Sciences du langage. [Google Scholar]
  6. Boons, J.-P. (1987). La notion sémantique de déplacement dans une classification syntaxique des verbes locatifs. Langue française, (76), 5–40. [CrossRef] [Google Scholar]
  7. Borillo, A. (1998). L’espace et son expression en français. Editions Ophrys. [Google Scholar]
  8. Bouvier, J.-C. (1999). Odonymes d’agglomération entre l’écrit et l’oral. Nouvelle revue d’onomastique, 33(1), 303–310. [CrossRef] [Google Scholar]
  9. Chinchor, N. A. (1998). Overview of muc-7/met-2. Science Applications International Corp San Diego CA. [Google Scholar]
  10. Clark, H. H. (1996). Using Language. Cambridge University Press. [Google Scholar]
  11. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement. Vol. 20, n° 1, pp. 37–46. [Google Scholar]
  12. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., and Qu, H. (2010). Context preserving dynamic word cloud visualization. 2010 IEEE Pacific Visualization Symposium (PacificVis), 121–128. https://doi.org/10.1109/PACIFICVIS.2010.5429600 [CrossRef] [Google Scholar]
  13. Dister, A., Constant, M., and Purnelle, G. (2009). Normalizing speech transcriptions for Natural Language Processing. 15. [Google Scholar]
  14. Ehrmann, M., Nouvel, D., and Rosset, S. (2016). Named Entity Resources—Overview and Outlook. Portoroz, Slovenia. [Google Scholar]
  15. Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., Jha, S., Agrawal, M., Dziurzynski, L. A., Sap, M., Weeg, C., Larson, E. E., Ungar, L. H., Seligman M. E. P. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological science, 26(2), 159–169. [CrossRef] [Google Scholar]
  16. Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating non-local information into information extraction systems by gibbs sampling. Proceedings of the 43rd annual meeting on association for computational linguistics, 363–370. Association for Computational Linguistics. [Google Scholar]
  17. Flamein, H., and Eshkol-Taravella, I. (2020). Noms de lieux dans le corpus de français parlé: Une approche symbolique pour un traitement automatisé. Le français moderne, n. 1. Editions CILF. [Google Scholar]
  18. Heimerl, F., Lohmann, S., Lange, S., and Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. 2014 47th Hawaii International Conference on System Sciences,. 1833–1842 https://doi.org/10.1109/HICSS.2014.231 [Google Scholar]
  19. Novakova, I. (2019). Le lexique des émotions. UGA Éditions. [CrossRef] [Google Scholar]
  20. Kergosien, E., Laval, B., Roche, M., and Teisseire, M. (2014). Are opinions expressed in land-use planning documents? International Journal of Geographical Information Science, 28(4), 739–762. [CrossRef] [Google Scholar]
  21. Kergosien, E., Maurel, P., Roche, M., and Teisseire, M. (2013). OPITER: Fouille de données d’opinion pour les territoires. Spatial Analysis and GEOmatics (Sagéo ’13), Brest. [Google Scholar]
  22. Kergosien, E., Maurel, P., Roche, M., and Teisseire, M. (2015). Senterritoire pour la détection d’opinions liées à l’aménagement d’un territoire. Revue Internationale de Géomatique, 25(1), 11–34. https://doi.org/10.3166/RIG.25.11-34 [CrossRef] [Google Scholar]
  23. Kumar, M., and Bala, A. (2016). Analyzing Twitter sentiments through big data. 2016. 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2628–2631. IEEE. [Google Scholar]
  24. Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics. pp. 159–174. [Google Scholar]
  25. Laur, D. (1991). Sémantique du déplacement et de la localisation en français: Une étude des verbes, des prépositions et de leurs relations dans la phrase simple (PhD Thesis). Toulouse 2. [Google Scholar]
  26. Le Pesant, D. (2011). Problèmes de morphologie, de syntaxe et de classification sémantique dans le domaine des prépositions locatives. [Google Scholar]
  27. Le Pesant, D. (2012). Essai de classification des prépositions de localisation. SHS Web of Conferences, 1, 921–937. EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  28. Le Squère, R. (2006). Analyse des perceptions, usages et fonctions des toponymes actuels des territoires ruraux et urbains de Bretagne. Cahiers de sociolinguistique, (1), 81–99. [CrossRef] [Google Scholar]
  29. Lesbegueries, J., Sallaberry, C., and Gaio, M. (2006). Associating spatial patterns to textunits for summarizing geographic information. In ACM (Éd.), ACMSIGIR 2006. GIR, Geographic Information Retrieval, Workshop (p. 40–43). [Google Scholar]
  30. Liu, B., and Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In C. C. Aggarwal and C. Zhai (Éd.), Mining Text Data (p. 415–463). https://doi.org/10.1007/978-1-4614-3223-4 13 [Google Scholar]
  31. Loustau, P., Nodenot, T., and Gaio, M. (2008). Spatial Decision Support in the Pedagogical Area: Processing Travel Stories to Discover Itineraries Hidden Beneath the Surface. In L. Bernard, A. Friis-Christensen, and H. Pundt (Éd.), The European Information Society: Taking Geoinformation Science One Step Further (p. 359–378). https://doi.org/10.1007/978-3-540-78946-8 19 [Google Scholar]
  32. Marchand, M. (2015). Domaines et fouille d’opinion: une étude des marqueurs multipolaires au niveau du texte. PhD Thesis. [Google Scholar]
  33. Maurel, D., Friburger, N., Antoine, J. Y., Eshkol-Taravella, I., and Nouvel, D. (2011). CasEN: a transducer cascade to recognize French Named Entities. TAL, 52(1), 69–96. [Google Scholar]
  34. Maurel S., Curtoni P. and Dini L. (2007). Classification d’opinions par méthodes symbolique, statistique et hybride. Actes de DEFT 2007, p. 111–117, [en ligne] [URL: http://www.celi-france.com/IMG/pdf/celi-france_deft07-2.pdf] [Google Scholar]
  35. Mohammad, S. M., and Turney, P. D. (2010). Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, 26–34. Association for Computational Linguistics. [Google Scholar]
  36. Mohammad, S. M., and Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. Computational Intelligence, 29(3), 436–465. https://doi.org/10.1111/j. 1467–8640.2012.00460.x [CrossRef] [Google Scholar]
  37. Moncla, L., Gaio, M., Nogueras-Iso, J., and Mustière, S. (2016). Reconstruction of itineraries from annotated text with an informed spanning tree algorithm. International Journal of Geographical Information Science, 30(6), 1137–1160. https://doi.org/10.1080/13658816.2015.1108422 [CrossRef] [Google Scholar]
  38. Nadeau, D., and Sekine, S. (2009). A survey of entity recognition and classification. Named entitiesrecognition, classification and use. Amsterdam/Philadelphia: John Benjamins Publishing Company. [Google Scholar]
  39. Neisser, U. (1967). Cognitive psychology appleton-century-crofts. New York, 351. [Google Scholar]
  40. Nouvel, D., Ehrmann, M., and Rosset, S. (2016). Named Entities for Computational Linguistics. ISTE. [CrossRef] [Google Scholar]
  41. Nouvel, D., Antoine, J.-Y., Friburger, N., and Soulet, A. (2012). Coupling Knowledge-based and Data-driven Systems for Named Entity Recognition. Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data, 69–77. [Google Scholar]
  42. Pak, A., and Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. LREc, 10, 1320–1326. [Google Scholar]
  43. Paumier, S., Nakamura, T., and Voyatzi, S. (2009). UNITEX, a Corpus Processing System with Multi-Lingual Linguistic Resources. eLEX2009,173. [Google Scholar]
  44. Shriberg, E. E. (s. d.). Preliminaries to a Theory of Speech Disfluencies. 225. [Google Scholar]
  45. Sindhu, C., and Vadivu, G. (2019). Sentiment Analysis and Opinion Summarization of Product Feedback. International Journal of Recent Technology and Engineering (IJRTE), 8. [Google Scholar]
  46. Tuan, Y.-F. (1977). Space and place: The perspective of experience. U of Minnesota Press. [Google Scholar]
  47. Vandeloise, C. (1986). L’espace en français: Sémantique des prépositions spatiales (Vol. 13). Seuil. [Google Scholar]
  48. Zhang, L. (2012). Analyse automatique d’opinion: Problématique de l’intensité et de la négation pour l’application à un corpus journalistique (Université de Caen). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.