Open Access
Issue
SHS Web of Conferences
Volume 27, 2016
5e Congrès Mondial de Linguistique Française
Article Number 06001
Number of page(s) 18
Section Linguistique de l’écrit, Linguistique du texte, Sémiotique, Stylistique
DOI https://doi.org/10.1051/shsconf/20162706001
Published online 04 July 2016
  1. D. Boyd et K. Crawford, «Critical questions for big data,» Information, Communication & Society, vol. 15, n° %15, pp. 662-679, 2012. [CrossRef]
  2. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh et A. Hung Byers, «Big data: the next frontier for innovation, competition, and productivity,» McKinsey Global Institute, 2011.
  3. S. Plane, D. Alamargot et J.-L Lebrave, «Temporalité de l’écriture et rôle du texte produit dans l’activité rédactionnelle,» Langages, vol. 177, n° %11, pp. 11-32, 2010.
  4. C. Doquet-Lacoste, Étude Génétique de l’Écriture sur Traitement de Texte d’Élèves de Cours Moyen 2, Année 1995-1996, Paris: Université Sorbonne nouvelle, 2003, p. 633.
  5. K. S. Miller et K. P. Sullivan, «Keystroke Logging: An introduction,» chez Computer keystroke logging and writing, Oxford, Elsevier, 2006, pp. 1-10.
  6. K. P. Sullivan et E. Lindgren, «La révision en production écrite enregistrée,» chez Temps de l’écriture: enregistrements et représentations, C. Leblay et G. Caporossi, Éds., Louvain-la-Neuve, Academia, 2014, pp. 71-92.
  7. G. Caporossi et C. Leblay, «Outils de visualisation de données enregistrées,» chez Temps de l’écriture: enregistrements et représentations, C. Leblay et G. Caporossi, Éds., Louvain-la-Neuve, Academia, 2014, pp. 147-166.
  8. G. Caporossi et C. Leblay, «Online Writing Data Representation : A Graph Theory Approach,» chez Lecture Notes in Computer Sciences 7014, 2011, pp. 80-89. [CrossRef]
  9. N. Yau, Visualize this: the flowing data guide to design, visualization and statistics, Indianapolis: Wiley Publishing, 2011, p. 358.
  10. M. Minelli, M. Chambers et A. Dhiraj, Big data, big analytics : Emerging business intelligence and analytic trends for today’s businesses, Wiley, 2013, p. 224.
  11. F. Blanchard, Visualisation et classification de données multidimensionnelles application aux images multicomposantes, Université de Reims Champagne Ardenne , 2005.
  12. M. Tory et T. Moller, «Human factors in visualization research,» IEEE Transactions on visualization and computer graphics, vol. 10, n° %11, pp. 72-84, 2004. [CrossRef]
  13. G. Dzemyda, O. Kurasova et J. Zilinskas, «Multidimensional Data Visualization: Methods and Applications,» Springer, Vilnius, 2013. [CrossRef]
  14. T. Moller, B. Hamann et R. Russell, «Preface,» chez Mathematical foundation of scientific visualization, computer graphics, and massive data exploration, Berlin, Springer, 2009, pp. V-VII.
  15. H. A. Karimi, «Big data :Techniques and technologies in geoinformatics,» Boca Taton: CRC Press, 2014. [CrossRef]
  16. S. Tufféry, Data mining et statistique décisionnelle: l’intelligence des données, Éditions Technip, 2010, p. 705.
  17. E. Lindgren et K. P. Sullivan, «The LS Graph : A Methodology for Visualizing Writing Revision,» Language Learning, vol. 52, n° %13, pp. 565-595, 2002. [CrossRef]
  18. J. Van Sickle, Basic GIS coordinates, Second Edition, Boca Raton: CRC Press, 2010. [CrossRef]
  19. E. Lindgren, K. P. H. Sullivan, U. Lindgren et K. Spelman Miller, «GIS for Writing: Applying Geographical Information Systems Techniques to Data Mine Writings’ Cognitive Processes,» chez Writing and Cognition, Amsterdam, Elsevier, 2007, pp. 83-96.
  20. C. D. Lloyd, Spatial data analysys: an introduction for GIS users, New York: Oxford University Press, 2010.
  21. M. Leijten et L. Van Waes, «Inputlog : New Perspectives on the Logging of On-Line Writing Processes,» chez Computer Keystroke Logging and Writing, K. P. S. a. E. Lindgren, Éd., Elsevier, 2006, pp. 73-94.
  22. A. Wengelin, M. Torrance, K. Holmwvist, S. Simpson, D. Galbraith, V. Johansson et R. Johansson, «Combined eyetracking and keystroke-logging methods for studying cognitive processes in text production,» Behavior Research Methods, vol. 41, n° %12, pp. 337-351, 2009. [CrossRef]
  23. M. Leijten et L. Van Waes, «Keystroke Logging in Writing Research : Using Inputlog to Analyze and Visualize Writing Processes,» vol. 30, n° %13, pp. 358-392, 2013.
  24. C. Leblay, «Le Temps de l’Écriture. Genèse, durée, représentations,» 2011. [En ligne]. Available: https://www.jyu.fi/ajankohtaista/arkisto/2011/11/tiedote-2011-11-04-10-14-59-722468. [Accès le 15 12 2013].
  25. V. Southavilay, K. Yacef, P. Reimann et R. A. Calvo, «Analysis of Collaborative Writing Processes Using Revision Maps and Probabilistic Topic Models,» Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp. 38-47, 2013.
  26. A. J. Bondy et U. S. R. Murty, Graph theory with applications, New York: Elsevier Science Publishing Co. Inc., 1982.
  27. R. K. Ahuja, T. L. Magnanti et J. B. Orlin, Network flows: Algorithms and applications, Upper Saddle River: Prentice Hall, 1993.
  28. E. J. Henley et R. A. Williams, Graph theory in modern engineering, Houston: Academic Press, 1973.
  29. S. Saha Ray, Graph theory with algorithms and its applications in applied science and technology, Rourkela, India: Springer India, 2013. [CrossRef]
  30. C. C. Aggarwal et H. Wang, «Graph data management and mining: a survey of algorithms and applications,» chez Managing and mining graph data, C. C. Aggarwal et H. Wang, Éds., New York, Springer, 2010, pp. 13-68.
  31. L. Takac et M. Zabovsky, «Data analysis in public social networks,» Lomza, Poland, 2012.
  32. M. Kuramochi et G. Karypis, «Finding frequent patterns in a large sparse graph,» Data mining and knowledge discovery, vol. 11, n° %13, pp. 243-271, 2005. [CrossRef]
  33. C. Garcia-Debanc et K. Bonnemaison, «La gestion de la cohésion textuelle par des élèves de 11-12 ans: réussites et difficultés,» chez CMLF 2014, Toulouse.
  34. H.-S. Becotte-Boutin, G. Caporossi et A. Hertz, «The progressive visualization, a new tool for analyzing the writing process,» Cahiers du GERAD, vol. 131, 2015.
  35. H. Zha, Y. Yang, J. Wang et L. Wen, «Transforming XPDL to Petri Nets,» chez Business Process Management Workshops.
  36. Y. Wu, L. Wang, J. Ren et W. Ding, «Mining sequential patterns eith periodic wildcard gaps,» Applied intelligence, vol. 41, n° %11, pp. 99-116, 2014. [CrossRef]
  37. WritingPro, «Writing Pro,» 2014. [En ligne]. Available: http://www.writingpro.eu/. [Accès le 02 08 2014].
  38. I. Witten, «Text mining,» Hamilton, New Zealand, 2004.
  39. G. Weikum, J. Hoffart, N. Nakashole, M. Spaniol, F. Suchanek et M. A. Yosef, «Big data methods for computational linguistics,» IEEE Data Engineering Bulletin, vol. 35, pp. 46-55, 2012.
  40. J. Veronis, «Computerized Correction of Phonographic Errors,» Computers and the Humanities, vol. 22, n° %11, pp. 43-56, 1988. [CrossRef]
  41. L. Van Waes et P. J. Schellens, «Writing Profiles : The Effect of the Writing Mode on Pausing and Revision Patterns of Experienced Writers,» Journal of Pragmatics, vol. 35, pp. 829-853, 2003. [CrossRef]
  42. L. Van Waes et M. Leijten, «Inputlog 6.0: State of the art.,» chez Paper presented at the Keystroke logging training school, Antwerp, 2014.
  43. L. Van Waes et M. Leijten, «Inputlog 6.0: Pause and fluency analysis.,» chez Paper presented at the keystroke logging training school, Antwerp, 2014.
  44. R. E. Tarjan, «Problems in data structures and algorithms,» chez Graph theory, combinatorics and algorithms, M. C. Golumbic et I. B. Hartman, Éds., Springer, 2005, pp. 17-39. [CrossRef]
  45. S. Stromqvist, K. Holmqvist, V. Johansson, H. Karlsson et A. Wengelin, «What Keystroke Logging can Reveal about Writing,» chez Computer Keystroke Logging and Writing, K. P. S. &. E. Lindgren, Éd., Elsevier, 2006, pp. 45-71.
  46. K. Spelman Miller et K. P. Sullivan, «Keystroke Logging : An Introduction,» chez Computer Keystroke Logging and Writing, Elsevier, 2006, pp. 1-10.
  47. K. Severinson Eklundh et P. Kollberg, «A Computer Tool and Franework for Analysing On-Line Revisions,» chez The Science of Writing : Theories, Methods, Individual Differences, and Applications, Mahwah, NJ, Lawrence Erbaum, 1996, pp. 163-188.
  48. D. H. Roen et R. Willey, «The Effects of Audience Awareness on Drafting and Revising,» Research in the Teaching of English, vol. 22, n° %11, pp. 75-88, 1988.
  49. S. Plane, D. Alamargot et J.-L Levrabe, «Temporalité de l’Écriture et Rôle du Texte Produit dans l’Activité Rédactionnelle,» Langages, vol. 177, n° %11, pp. 11-32, 2010.
  50. D. Perrin, «Progression Analysis (PA): Investigating Writing Strategies at the Workplace,» Journal of Pragmatics, vol. 35, pp. 907-921, 2003. [CrossRef]
  51. R. D. Owston, S. Murphy et H. H. Wideman, «The Effects of Word Processing on Student’s Writing Quality and Revision Strategies,» Research in the Teaching of English, vol. 26, n° %13, pp. 249-276, 1992.
  52. E. New, «Computer-Aided Writing in French as a Foreign Language : A Qualitative and Quantitative Look at the Process of Revision,» The Modern Language Journal, vol. 83, n° %1i, pp. 80-97, 1999.
  53. G. Miner, J. Elder, B. Nibset, D. Delen, A. Fast et T. Hill, Practical text mining and statistical analysis for non-structured text data applications, Academic Press éd., Saint-Louis, 2012, p. 1094.
  54. Merriam-Webster, «Apophenia, Merriam-Webster,» 2014. [En ligne]. Available: http://www.merriam-webster.com/dictionary/apophenia. [Accès le 03 08 2014].
  55. J. Leskovec, J. Kleinberg et C. Faloutsos, «Graph evolution: Densification and shrinking diameters,» ACM Transactions on Knowledge Discovery from Data, vol. 1, n° %11, p. Article 2, 2007. [CrossRef]
  56. M. Leijten et L. Van Waes, «Inputlog features,» 2014. [En ligne]. Available: http://www.inputlog.net/description_features.html. [Accès le 25 07 2014].
  57. J.-L Lebrave et A. Grésillon, «Linguistique et génétique des textes : un décalogue,» 23 03 2009. [En ligne]. Available: http://item.ens.fr/index.php?id=434571. [Accès le 14 12 2013].
  58. J.-L Lebrave, «Comment écriront-ils?,» Diogène, vol. 196, n° %14, pp. 163-171, 2001.
  59. C. Leblay et G. Caporossi, «Introduction aux données temporelles de l’écriture,» chez Temps de l’écriture: enregistrements et représentations, C. Leblay et G. Caporossi, Éds., Louvain-la-Neuve, Academia, 2014, pp. 5-15.
  60. C. Leblay, «En deçà du bien et du mal écrire,» 14 06 2012. [En ligne]. Available: http://www.item.ens.fr/index.php?id=578258. [Accès le 07 07 2014].
  61. M. M. A. Latif, «A State-of-the-Art Review of the Real-Time Computer-Aided Study of the Writing Process,» International Journal of English Studies, vol. 8, n° %11, pp. 29-50, 2008.
  62. P. Kollberg, «S-notation as a tool for analysing the episodic nature of revisions,» Barcelona, 1996.
  63. R. Karp, «Optimization problems related to internet congestion control,» chez Graph theory, combinatorics and algorithms, M. C. Golumbic et I. B. Hartman, Éds., Springer, 2005, pp. 1-16. [CrossRef]
  64. G. Kanawaty, Introduction à l’étude du travail 3e édition, Bureau International du Travail éd., Genève, 1996.
  65. S. Helbing et S. Balietti, «From social data mining to forecasting socio-economic crises,» The European Physical Journal Special Topics, vol. 195, pp. 3-68, 2011. [CrossRef] [EDP Sciences]
  66. C. Haas, «How the Writing Medium Shapes the Writing Process : Effects of Word Processing on Planning,» Research in the Teaching of English, vol. 23, n° %12, pp. 181-207, 1989.
  67. D. Foucambert et J. Foucambert, «Gestes d’écriture et caractéristiques linguistiques des textes achevés,» chez Temps de l’écriture: enregistrements et représentations, C. Leblay et G. Caporossi, Éds., Louvain-la-Neuve, Academia, 2014, pp. 43-70.
  68. C. Doquet, «Pour une approche linguistique de l’écriture enregistrée,» chez Temps de l’écriture: enregistrements et représentations, Academia, Éd., LouvainlLa-Neuve, 2014, pp. 21-42.
  69. M. Dehmer et S. C. Basak, Statistical and machine learning approaches for network analysis, Somerset: John Wiley & Sons, 2012.
  70. C. De Looze, Analyse et Interprétation de l’Empan Temporel des Variations Prosodiques en Français et en Anglais, Marseille: Université de Provence, 2010.
  71. M. Cox, C. Ortmeier-Hopper et K. E. Tirabassi, «Teaching Writing for the "Real World": Community and Workplace Writing,» The English Journal, vol. 98, n° %15, pp. 72-80, 2009.
  72. J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein et C. Welton, «MAD skills: new analysis practices for big data,» Proceedings of the VLDB Endowment 2.2, pp. 1481-1492, 2009. [CrossRef]
  73. D. Chakrabarti et C. Faloutsos, Graph mining: laws, tools, and case studies, Morgan & Claypool Publishers series, 2012.
  74. A. Carbone et M. Gromov, «Mathematical sclices of molecular biology,» Gazette des mathématiciens, édition spéciale, vol. 88, pp. 11-80, 2001.
  75. I. Breetvelt, H. Van Den Bergh et G. Rijlaarsdam, «Relations between Writing Processes and Text Quality : When and How,» Cognition and Instruction, vol. 12, n° %12, pp. 103-123, 1994. [CrossRef]
  76. M. Bramer, Principles of data mining, 2nd éd., Portsmouth: Springer, 2013. [CrossRef]
  77. M. R. Berthold, «Bisociative knowledge discovery,» chez Advances in intelligent data analysis X, J. Gama, E. Bradley et J. Hollmen, Éds., Porto, Springer, 2011, pp. 1-7. [CrossRef]
  78. A.-L Barabasi, R. Albert et H. Jeong, «Scale-free characteristics of random networks: the topology of the world-wide web,» Physica A, vol. 281, pp. 69-77, 2000. [CrossRef]
  79. D. Alamargot, G. Caporossi, D. Chesnet et C. Ros, «What Makes a Skilled Writer? Working Memory and Audience Awareness During Text Composition,» Learning and Individual Differences, vol. 21, pp. 505-516, 2011. [CrossRef]
  80. R. Agrawal, T. Imielinski et A. Swami, «Mining association rules between sets of items in large databases,» New York, 1993.
  81. L. Flower et J. R. Hayes, «A cognitive process theory of writing,» College Composition and Communication, vol. 32, n° %14, pp. 365-387, 1981. [CrossRef]
  82. P. Kollberg, «Rules for the S-notation: a compuyter-based method for representing revisions,» IPLab, Royal Institute of Technology (KTH), Stockholm, Sweden, 1996.
  83. D. Alamargot et J.-L Lebrave, «The study of professional writing: A joint contribution from cognitive psychology and genetic criticism,» European Psychologist, n° %1doi:10.1027/1016-9040/a000001, 2009.
  84. T. Olive, J.-L Lebrave, J.-M Passerault et N. Le Bigot, «La dimension visuo-spatiale de la production de textes: approches de psychologie cognitive et de critique génétique,» Langages, vol. 177, n° %11, pp. 29-55, 2010. [CrossRef]
  85. W. Daelemans, P. Berck et S. Gillis, «Data mining as a Method for Linguistic Analysis: Dutch Diminutives,» Dutch Diminutives, Folia Linguistica, XXXI/I -2, pp. 57-75, 1997.
  86. P. A. Bath, C. Craigs, R. Maheswaran, J. Raymond et P. Willett, «Use of graph theory to identify patterns of deprivaton and high morbidity and mortality in public health data sets,» Journal of the American Medical Informatics Association, vol. 12, n° %16, pp. 630-641, Nov-Dec 2005. [CrossRef]
  87. A. Markowetz, K. Blasziewicz, C. Montag, C. Switala et E. S. Thomas, «Psycho-Informatics: Big Data shaping modern psychometrics,» Medical Hypotheses, vol. 82, n° %14, pp. 405-411, April 2014. [CrossRef]
  88. F. J. Ohlhorst, Big Data Analytics : Turning Big Data into Big Money, Wiley, 2013, p. 176.
  89. E. Lindgren et K. P. Sullivan, «Writing and the Analysis of Revision: An Overview,» chez Computer Keystroke Logging and Writing, Elsevier, 2006, pp. 31-44.
  90. ITEM, «Enjeux de recherche,» 7 mai 2014. [En ligne]. Available: http://www.item.ens.fr/index.php?identifier=l-item. [Accès le 14 juin 2014].
  91. I. Breetvelt, H. v. d. Bergh et G. Rijlaarsdam, «Relations between writing processes and text quality: When and how?,» Cognition and Instruction, vol. 12, n° %12, pp. 103-123, 1994. [CrossRef]
  92. C. Lynch, «How do your data grow?,» Nature, vol. 455, n° %14, pp. 28-29, 2008. [CrossRef] [PubMed]
  93. E. Midgette, P. Haria et C. MacArthur, «The effects of content and audience awareness goals for revision on the persuasive essays of fifth- and eighth-grade students,» Reading and Writing, vol. 21, pp. 131-151, 2008. [CrossRef]
  94. E. W. Bethel, P. Prabhat, S. Byna, O. Rubel, K. J. Wu et M. Wehner, «Why high performance visual data analytics is both relevant and difficult,» Burlingame, California, USA, 2013.
  95. F. A. Abukhodair, B. E. Riecke, H. I. Erhan et C. D. Shaw, «Does interactive animation control improve exploratory data analysis of animated trend visualization?,» Burlingame, California, USA, 2013.
  96. L. Bartram, «Perceptual and interpretative properties of motion for information visualization,» Proceedings of the 1997 workshop on new paradigms in information visualization and manipulation, pp. 3-7, 1997.
  97. D. Alamargot, G. Caporossi, D. Chesnet et C. Ros, «What makes a skilled writer? Working memory and audience awareness during text composition,» Learning and Individual Differences, vol. 21, n° %15, pp. 505-516, 2011. [CrossRef]
  98. V. M. Baaijen, D. Galbraith et K. d. Glopper, «Keystroke analysis: reflections on procedures and measures,» Written Communication, vol. 29, n° %13, pp. 246-277, 2012. [CrossRef]
  99. A. Kirk, Data visualization: a successful design process [electronic book], Packt Pub., 2012.
  100. A. Wengelin, «Temps et pauses dans l’écriture au clavier,» chez Temps de l’écriture: enregistrements et représentations, Louvain-la-Neuve, Academia, 2014, pp. 97-124.
  101. W. Aigner, S. Miksch, H. Schumann et C. Tominski, «Visualization of Time-Oriented Data,» Springer, London, 2011.
  102. D. Perrin et S. Laemmel, «Application à l’écriture journalistique,» chez Temps de l’écriture, enregistrements et représentations, Louvain-la-Neuve, Academia-L’Harmattan s.a., 2014, pp. 171-192.
  103. A. Unwin, C.-h Chen et W. K. Hardle, «Introduction,» chez Handbook of Data Visualization, Berlin, Springer, 2008, pp. 3-14. [CrossRef]
  104. A. Vathy-Fogarassy et J. Abonyi, Graph-Based clusterting and data visualization, Springer, 2013. [CrossRef]
  105. D. Chesnet et D. Alamargot, «Eye and Pen 2 manuel de l’utilisateur,» Poitiers, 2011.
  106. E. R. Tufte, The visual display of quantitative information, Second éd., Cheshire, Connecticut: Graphics Press, 2001.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.